Vol. 21
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-14
A New Accurate Model of High-Impedance Surfaces Consisting of Circular Patches
By
Progress In Electromagnetics Research M, Vol. 21, 1-17, 2011
Abstract
In this paper, we consider a dense array of metallic circular patches printed on a electrically thin metal-backed dielectric substrate. Since the sub-wavelength dimensions, the array and the metal-backed substrate can be described in terms of a lumped capacitance and a lumped inductance, respectively. Around the resonant frequency, the structure, known as high-impedance surface, reflects totally an incident electromagnetic wave with zero shift in phase. Due to this property, it is widely employed in antenna systems as compact back reflector with improved performances with respect to typical metal reflector. Starting from the concept of the grid capacitive reactance of a planar array of squared patches and its related formulas, we investigate on the field distribution on the array plane and properly modify the formulas for the case of the circular patches. We present two new analytical formulas which can be effectively used for the fast design of 2D-isotropic circular HISs. In order to validate the models, we compare the resonant frequency of the array obtained through our approaches to the one resulting from full-wave numerical simulations and from other analytical methods available in the open technical literature.
Citation
Davide Ramaccia, Alessandro Toscano, and Filiberto Bilotti, "A New Accurate Model of High-Impedance Surfaces Consisting of Circular Patches," Progress In Electromagnetics Research M, Vol. 21, 1-17, 2011.
doi:10.2528/PIERM11050909
References

1. Bilotti, F., A. Toscano, and L. Vegni, "FEM-BEM formulation for FEM-BEM formulation for," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, 2003.
doi:10.1109/TAP.2003.809076

2. Bilotti, F., A. Toscano, and L. Vegni, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE Trans. Antennas Propagat., Vol. 51, 449-456, 2003.
doi:10.1109/TAP.2003.809837

3. Scamarcio, G., F. Bilotti, A. Toscano, and L. Vegni, "Broad band U-slot patch antenna loaded by chiral material," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 10, 1303-1317, 2001.
doi:10.1163/156939301X01192

4. Bilotti, F. and L. Vegni, "Chiral cover effects on microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 51, 2891-2898, 2003.
doi:10.1109/TAP.2003.816317

5. Vegni, L., A. Toscano, and F. Bilotti, "Shielding and radiation characteristics of planar layered inhomogeneous composites," IEEE Trans. Antennas Propagat., Vol. 51, 2869-2877, 2003.
doi:10.1109/TAP.2002.802099

6. Ziolkowski, R. W. and N. Engheta, "Metamaterial special issue introduction," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2546-2549, 2003.
doi:10.1109/TAP.2003.818317

7. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, Research Studies Press, Taunton, England, 1997.

8. Bilotti, F., A. Alµu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, Vol. 51, 49-63, 2005.
doi:10.2528/PIER04041401

9. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microw. Opt. Technol. Lett., Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

10. Bilotti, L., A. Toscano, L. Vegni, K. B. Alici, K. Aydin, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

11. Alµu, A., F. Bilotti, N. Engheta, and L. Vegni, "Sub-Wavelength planar leaky-wave components with metamaterial bilayers," IEEE Trans. Antennas Propagat., Vol. 55, 882-891, 2007.

12. Bilotti, F., S. Tricarico, and L. Vegni, "Electromagnetic cloaking devices for TE and TM polarizations," New J. Phys., Vol. 10, 115035, 2008.
doi:10.1088/1367-2630/10/11/115035

13. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegni, "Design of miniaturized narrowband absorbers based on resonant magnetic inclusions," IEEE Trans. Electromag. Comp., Vol. 53, 63-72, Feb. 2011.
doi:10.1109/TEMC.2010.2051229

14. Ramaccia, D., F. Bilotti, and A. Toscano, "Analytical model of a metasurface consisting of a regular array of subwavelenght circular holes in a metal sheet," Progress In Electromagnetics Research M, Vol. 18, 209-219, 2011.

15. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

16. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. Dissertation, UCLA, 1999. Available at www.ee.ucla.edu/labs/photon/thesis/ThesisDan.pdf.

17. De Cos, M. E., Y. Alvarez Lopez, and F. Las-Heras Andres, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

18. Chang, C.-S., J.-Y. Li, W.-J. Lin, M.-P. Houng, L.-S. Chen, and D.-B. Lin, "Controlling the frequency of simultaneous switching noise suppression by using embedded dielectric resonators in high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406

19. De Cos, M. E., Y. Alvarez Lopez, R. C. Hadarig, and F. Las-Heras Andres, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505

20. Sievenpiper, D., E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Phys. Rev. Lett., Vol. 80, 2829-2832, 1998.
doi:10.1103/PhysRevLett.80.2829

21. Zarrillo, G. and K. Aguiar, "Closed-form low frequency solutions for electromagnetic waves through a frequency selective surface," IEEE Trans. Antennas Propagat., Vol. 35, No. 12, 1987.
doi:10.1109/TAP.1987.1144035

22. Tretyakov, S. A., "Analytical Modeling in Applied Electromagnetics," Artech House, 2003.

23. Viitanen, A. J., I. Hanninen, and S. A. Tretyakov, "Analytical model for regular dense arrays of planar dipole scatterers," Progress In Electromagnetics Research, Vol. 38, 97-110, 2002.
doi:10.2528/PIER02091601

24. Luukkonen, O., C. R. Simovsky, G. Granet, G. Goussetis, D. Lioubtchenko, A. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips," IEEE Trans. Antennas Propagat., Vol. 56, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

25. Lee, S., G. Zarrillo, and C. L. Law, "Simple formulas for transmission trough periodic metal grids or plattes," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 1982.

26. CST Studio Suite 2010, Computer Simulation Technology, , http://www.cst.com.

27. Compton, R. C., L. B. Whitbourn, and R. C. McPhedran, "Strip gratings at a dielectric interface and applications of Babinet's principle," Appl. Opt., Vol. 23, 3236-3242, 1984.
doi:10.1364/AO.23.003236

28. Timusk, T. and P. L. Richards, "Near millimeter wave bandpass filters," Appl. Opt., Vol. 20, 1355-1360, 1981.
doi:10.1364/AO.20.001355