Vol. 19
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-03
CSAR Imaging with Data Extrapolation and Approximate Glrt Techniques
By
Progress In Electromagnetics Research M, Vol. 19, 209-220, 2011
Abstract
Circular synthetic aperture radar (CSAR) is different from other usual SAR modes, e.g., Stripmap SAR or Spotlight SAR, which takes a circular path rather than a straight path. It can provide not only two-dimensional (2-D) high resolution images but also three-dimensional (3-D) information about the target. In this paper, 2-D CSAR imaging containing 3-D information about the target is discussed. Considering the limited bandwidth of radar system and the limited angular persistence of the reflector's scattering characteristic in a real scene, we combine the data extrapolation technique based on the autoregressive (AR) model with the non-coherent combination of the sub-aperture images based on the approximate Generalized Likelihood Ratio Test (GLRT) technique to get a 2-D CSAR image with resolution improved and with aspect-dependent reflectivity characteristics kept. The GTRI T-72 tank dataset is processed to test the algorithm.
Citation
Lingjuan Yu, and Yunhua Zhang, "CSAR Imaging with Data Extrapolation and Approximate Glrt Techniques," Progress In Electromagnetics Research M, Vol. 19, 209-220, 2011.
doi:10.2528/PIERM11062904
References

1. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, Ch. 7, Wiley, New York, 1999.

2. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Trans. Image Process., Vol. 5, No. 8, 1252-1265, Aug. 1996.
doi:10.1109/83.506760

3. Ishimaru, A., T. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1524-1530, Sep. 1998.
doi:10.1109/36.718856

4. Dudgeon, D. E., R. T. Lacoss, C. H. Lazott, et al. "Use of persistant scatterers for model-based recognition," Proc. SPIE 2230, 356-368, Apr. 1994.
doi:10.1117/12.177192

5. Trintinalia, L. C., R. Bhalla, and H. Ling, "Scattering center parameterization of wide-angle backscattered data using adaptive gaussian representation," IEEE Trans. Antennas and Propagation, Vol. 45, 1664-1668, Nov. 1997.

6. Odendaal, J. W., E. Barnard, and C. W. I Pistorius, "Two-dimensional superresolution radar imaging using the MUSIC algorithm," IEEE Trans. Antennas and Propagation, Vol. 42, No. 10, 1386-1391, 1994.
doi:10.1109/8.320744

7. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

8. Gupta, I. J., M. J. Beals, and A. Moghaddar, "Data extrapolation for high resolution radar imaging," IEEE Trans. Antennas and Propagation, Vol. 42, No. 11, 1540-1545, 1994.
doi:10.1109/8.362783

9. Kayran, A. H. and I. Erer, "Optimum asymmetric half-plane autoregressvie lattice parameter modeling of 2-D fields," IEEE Trans. Signal Processing, Vol. 52, No. 3, 807-819, 2004.
doi:10.1109/TSP.2003.822363

10. Yu, L.-J. and Y.-H. Zhang, "One-dimensional spectrum extrapolation for circular SAR imaging," International Symposium on Antennas Propagation and EM Theory, Nov. 2010.

11. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Non-linear apodization for sidelobe control in SAR imagery," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, 267-279, 1995.
doi:10.1109/7.366309

12. Zhai, W. and Y. Zhang, "Application of super-sva to stepped-chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011.

13. Moses, R. L. and L. C. Potter, "Noncoherent 2D and 3D SAR reconstruction from wide-angle measurements," 13th Annual Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, MA, Jun. 2005.

14. Moses, R. L., E. Ertin, and C. Austin, "Synthetic aperture radar visualization," Proceedings of the 38th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2004.

15. Ertin, E., L. C. Potter, and R. L. Moses, "Enhanced imaging over complete circular apertures," Proceedings of the 40th Asilomar Conference on Signals, Systems, and Computers, Nov. 2006.

16. Ertin, E., R. L. Moses, and L. C. Potter, "Interferometric methods for three-dimensional target reconstruction with multipass circular SAR," Radar, Sonar and Navigation, IET, Vol. 4, No. 3, 464-473, 2010.
doi:10.1049/iet-rsn.2009.0048

17., GTRI-dataset website: https://www.sdms.afrl.af.mil/datasets/gtri..
doi:10.1049/iet-rsn.2009.0048

18. Showman, G. A., M. A. Richards, and K. J. Sangston, "Comparison of two algorithms for correcting zero-Doppler clutter in turntable ISAR imagery," Proceedings of the 32th Asilomar Conference on Signals, Systems, and Computers, Nov. 1998.