Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-09-08

Breast Cancer Detection Based on Differential Ultrawideband Microwave Radar

By Dallan Byrne, Martin O'Halloran, Martin Glavin, and Edward Jones
Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011
doi:10.2528/PIERM11080810

Abstract

Ultrawideband (UWB) microwave imaging is a promising emerging method for the detection of breast cancer. Fibroglandular tissue has been shown to significantly limit the effectiveness of UWB imaging algorithms, particularly in the case of premenopausal women who may present with more dense breast tissue. Rather than trying to create an image of the breast, this study proposes to compare the UWB backscattered signals from successive scans of a dielectrically heterogeneous breast, to identify the presence of cancerous tissue. The temporal changes between signals are processed using Support Vector Machines to determine if a cancerous growth has occurred during the time between scans. Detection rates are compared to the results from a previous study by the authors, where UWB backscatter signals from a single scan were processed for cancer detection.

Citation


Dallan Byrne, Martin O'Halloran, Martin Glavin, and Edward Jones, "Breast Cancer Detection Based on Differential Ultrawideband Microwave Radar," Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011.
doi:10.2528/PIERM11080810
http://www.jpier.org/PIERM/pier.php?paper=11080810

References


    1. Jemal, A., R. Siegel, J. Xu, and E. Ward, "Cancer statistics," CA: A Cancer Journal for Clinicians, Vol. 60, No. 5, 277-300, 2010.
    doi:10.3322/caac.20073

    2. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
    doi:10.1109/10.730440

    3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
    doi:10.1163/156939306775777350

    4. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
    doi:10.2528/PIER11050408

    5. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
    doi:10.2528/PIERC09031202

    6. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
    doi:10.1163/156939303322235860

    7. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
    doi:10.2528/PIER10030902

    8. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
    doi:10.2528/PIER10061001

    9. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
    doi:10.2528/PIER10090205

    10. Lazebnik, M., C. Zhu, G. M. Palmer, J. Harter, S. Sewall, N. Ramanujam, and S. C. Hagness, "Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: Comparison of optical and microwave properties," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 10, 2444-2451, Oct. 2008.
    doi:10.1109/TBME.2008.925700

    11. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machine-based ultrawideband breast cancer detection system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1807-1816, 2011.
    doi:10.1163/156939311797454015

    12. White, E., P. Velentgas, M. T. Mandelson, C. D. Lehman, J. G. Elmore, P. Porter, Y. Yasui, and S. H. Taplin, "Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years," Journal of the National Cancer Institute, Vol. 90, No. 12, 906-910, 1998.
    doi:10.1093/jnci/90.12.906

    13. Bennett, K. P. and C. Campbell, "Support vector machines: Hype or hallelujah?," SIGKDD Explorations Newsletter, Vol. 2, No. 1, 1-13, 2000.
    doi:10.1145/380995.380999

    14. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, 273-297, 1995.

    15. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", April, 2010, [Online], Available: http://www.csie.ntu.edu.tw/cjlin/papers.html..

    16. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
    doi:10.2528/PIER10051904

    17. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

    18. Hair, J., W. Black, B. Babin, R. Anderson, and R. Tatham, Multivariate Data Analysis, 6th Edition, Prentice Hall, Upper Saddle River, NJ, 2006.

    19. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.
    doi:10.1109/TBME.2008.2002130

    20. Sacks, Z., D. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
    doi:10.1109/8.477075

    21. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, Dec. 2007, (fitting Debye to the Cole cole models)..
    doi:10.1109/LMWC.2007.910465

    22. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996.
    doi:10.1088/0031-9155/41/11/001

    23. Shea, J. D., P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Contrast-enhanced microwave imaging of breast tumors: A computational study using 3D realistic numerical phantoms," Inverse Problems, Vol. 26, No. 7, 1-22, 2010.
    doi:10.1088/0266-5611/26/7/074009

    24. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
    doi:10.2528/PIERB10062407

    25. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
    doi:10.1109/TBME.2007.900564

    26. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.