Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

FEM Modeling of Periodic Arrays of Multiwalled Carbon Nanotubes

By Haider Butt, Timothy D. Wilkinson, and Gehan A. J. Amaratunga
Progress In Electromagnetics Research M, Vol. 22, 1-12, 2012


Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.


Haider Butt, Timothy D. Wilkinson, and Gehan A. J. Amaratunga, "FEM Modeling of Periodic Arrays of Multiwalled Carbon Nanotubes," Progress In Electromagnetics Research M, Vol. 22, 1-12, 2012.


    1. Iijima, S., "Helical microtubules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.

    2. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer, "Carbon nanotubes --- the route toward applications," Science, Vol. 297, 787-792, Aug. 2, 2002.

    3. Deuk-Seok, C., S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, and C. K. Lee, "Carbon nanotube electron emitters with a gated structure using backside exposure processes," Applied Physics Letters, Vol. 80, 4045-4047, 2002.

    4. Chen, Y., C. Liu, and Y. Tzeng, "Carbon-nanotube cold cathodes as non-contact electrical couplers," Diamond and Related Materials, Vol. 12, 1723-1728, 2003.

    5. Zhang, J. , G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y. Z. Lee, J. P. Lu, and O. Zhou, "Stationary scanning x-ray source based on carbon nanotube field emitters," Applied Physics Letters, Vol. 86, 2005.

    6. Junya, S., et al., "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy," Journal of Physics D: Applied Physics, Vol. 36, L109, 2003.

    7. Wilkinson, T. D., X. Wang, K. B. K. Teo, and W. I. Milne, "Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices," Advanced Materials, Vol. 20, 363-366, 2008.

    8. Zhou, H. , A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, and G. A. J. Amaratunga, "Arrays of parallel connected coaxial multiwall-carbon- nanotube-amorphous-silicon solar cells," Advanced Materials, Vol. 21, 3919-3923, 2009.

    9. Ying, L. and Z. Baoqing, "Properties of carbon nanotube optical antennae," International Journal of Infrared and Millimeter Waves, Vol. 29, 990-996, 2008.

    10. Butt, H., Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, "Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes," Applied Physics Letters, Vol. 97, 163102-3, 2010.

    11. Kempa, K., B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, and D. L. Carnahan, "Photonic crystals based on periodic arrays of aligned carbon nanotubes," Nano Letters, Vol. 3, 13-18, 2003.

    12. Teo, K. B. K., M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, "Uniform patterned growth of carbon nanotubes without surface carbon," Applied Physics Letters, Vol. 79, 1534-1536, 2001.

    13. Reyes-Esqueda, J. A., V. Rodriguez-Iglesias, H.-G. Silva-Pereyra, C. Torres-Torres, A.-L. Santiago-Ramirez, J. C. Cheang-Wong, A. Crespo-Sosa,L. Rodriguez-Fernandez, A. Lopez-Suarez, and A. Oliver, "Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites," Opt. Express, Vol. 17, 12849-12868, 2009.

    14. Bommelia, F. , L. Degiorgia, P. Wachtera, W. S. Bacsab, W. A. D. Heerb, and L. Forroc, "Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes," Solid State Communications, Vol. 99, 513-517, 1996.

    15. Guo, G. Y., K. C. Chu, D.-S. Wang, and C.-G. Duan, "Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations," Physical Review B, Vol. 69, 205416, 2004.

    16. Lidorikis, E. and A. C. Ferrari, "Photonics with multiwall carbon nanotube arrays," ACS Nano, Vol. 3, 1238-1248, 2009.

    17. Casiraghi, C., A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyun-yan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, "Rayleigh imaging of graphene and graphene layers," Nano Letters, Vol. 7, 2711-2717, 2007.

    18. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.

    19. Butt, H. , Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

    20. Wu, D., N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Applied Physics Letters, Vol. 83, 2003.

    21. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.

    22. Lourtioz, J. M. and D. Pagnoux, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin, 2008.