Vol. 23
Latest Volume
All Volumes
PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-06
A New Algorithm for Eliminating the Frequency Difference in Phase Noise Measurement of the Microwave Signal
By
Progress In Electromagnetics Research M, Vol. 23, 13-28, 2012
Abstract
The frequency difference between signal-under-test and reference signal in phase demodulation will affect the result of the actual phase noise measurement. In order to eliminate the effect, an algorithm for both eliminating the frequency difference and extracting the phase noise of the signal-under-test is presented. Simulation and experiment results show that this algorithm is effective. By using the algorithm in our experiment, the noise floor of the measurement system is improved by 10.1 dB and 9.3 dB, respectively, and the measurement precision is improved from 90.03% to 96.31%. In addition, the use of this algorithm can lower the requirement on the frequency precision of reference source and reduce the cost of measurement system.
Citation
Xiao-Long Chen, Xiang-Feng Zhang, and Jia-Li Wang, "A New Algorithm for Eliminating the Frequency Difference in Phase Noise Measurement of the Microwave Signal," Progress In Electromagnetics Research M, Vol. 23, 13-28, 2012.
doi:10.2528/PIERM11092206
References

1. Barnes, J. A., A. R. Chi, L. S. Cutler, et al. "Characterization of frequency stability," IEEE Transactions on Instrumentation and Measurement, Vol. 20, No. 20, 105-120, 1971.
doi:10.1109/TIM.1971.5570702

2. Demir, A. and J. Roychowdhury, "On the validity of orthogonally decomposed perturbations in phase noise analysis," Technical Memorandum, 1-13, Bell Laboratories, Murray Hill, 1997.

3. Yousefi, S., T. Eriksson, and D. Kuylenstierna, "A novel model for simulation of RF oscillator phase noise," 2010 IEEE Radio and Wireless Symposium, 428-431, 2010.

4. Razavi, B., "Analysis, modeling, and simulation of phase noise in monolithic voltage-controlled oscillators," Proceedings of the IEEE Custom Integrated Circuits Conference, 323-326, 1995.

5. Chorti, A. and M. Brookes, "A spectral model for RF oscillators with power-law phase noise," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 53, No. 9, 1989-1999, 2006.
doi:10.1109/TCSI.2006.881182

6. Kaertner, F. X., "Analysis of white and f noise in oscillators," International Journal of Circuit Theory and Application, 485-519, 1990.
doi:10.1002/cta.4490180505

7. Ward, P. and A. Duwel, "Oscillator phase noise: Systematic construction of an analytical model encompassing nonlinearity," IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 1, 195-205, 2011.
doi:10.1109/TUFFC.2011.1786

8. Rizzoli, V., A. Costanzo, F. Mastri, et al. "Harmonic-balance optimization of microwave oscillators for electrical performance, steady-state stability, and near-carrier phase noise," IEEE MTT- S International Microwave Symposium Digest, 1401-1404, 1994.

9. Chen, J., F. Jonsson, and L. R. Zheng, "A fast and accurate phase noise measurement of free running oscillators using a single spectrum analyzer," 2010 IEEE Norchip Conferences, 1-4, 2010.

10. Angrisani, L., A. Baccigalupi, and M. D'Arco, "A new method for phase noise measurement," Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Vol. 1, 663-668, Anchorage, AK, USA, 2002.

11. Salik, E., N. Yu, and L. Maleki, "Dual photonic-delay line cross correlation method for phase noise measurement," Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 303-306, 2004.
doi:10.1109/FREQ.2004.1418469

12. Rubiola, E., E. Sailk, S. H. Huang, et al. "Photonic delay technique for phase noise measurement of microwave oscillators," Optics InfoBase JOSA B, Vol. 22, No. 5, 987-997, 2005.
doi:10.1364/JOSAB.22.000987

13. Rubiola, E. and R. Boudot, "The effect of AM noise on correlation phase-noise measurements," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 5, 926-932, 2007.
doi:10.1109/TUFFC.2007.338

14. Stein, S. R., "Frequency and time: Their measurement and characterization," Precision Frequency Control, Vol. 2, 191-232, 1985.

15. Walls, F. L. and E. S. Ferre-Pikal, "Measurement of frequency, phase noise and amplitude noise," The Wiley Encyclopedia of Electrical and Electronic Engineering, Vol. 12, 459-473, 1999.

16. Gheidi, H. and A. Banai, "A new phase shifter-lee delay line method for phase noise measurement of microwave oscillators," Proceeding of the 38th European Microwave Conference, 325-328, Amsterdam, The Netherlands, 2008.

17. Lance, A., D. S. Wendell, and F. Labaar, "Phase noise and AM noise measurements in the frequency domain," Infrared and Millimeter Waves, Vol. 11, 239-289, 1984.

18. Ni, J., X. M. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, "Microwave frequency measurement based on phase modulation to intensity modulation conversion using fiber bragg grating," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 755-764, 2011.
doi:10.1163/156939311794827195

19. Handel, P., "Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm," IEEE Transaction on Instrumentation and Measurement, Vol. 49, No. 6, 1189-1193, 2000.
doi:10.1109/19.893254