Vol. 21
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-04
Wireless Networks Interference and Security Protection by Means of Vegetation Barriers
By
Progress In Electromagnetics Research M, Vol. 21, 223-236, 2011
Abstract
The success of wireless technologies could paradoxically leads to a collapse in their performance: the interference between adjacent networks and the attacks done by users from outside the expected coverage limits are two important enemies to the well function of the networks. The proposal of this paper is simple but efficient: the use of vegetation barriers to create shadowing areas with excess attenuations in the edge of the service area, in order to reduce the coverage distance of each wireless node, reducing the possible interference to other networks as well as improving security aspects by minimizing the signal strength outside the service area.
Citation
Jose E. Acuna, Inigo Cuinas, and Paula Gómez, "Wireless Networks Interference and Security Protection by Means of Vegetation Barriers," Progress In Electromagnetics Research M, Vol. 21, 223-236, 2011.
doi:10.2528/PIERM11093003
References

1., IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, Jun.2007.

2., IEEE Computer Society and the IEEE Microwave Theory and Techniques Society, IEEE Std 802.16eTM-2005 and IEEE Std 802.16TM-2004/Cor1-2005 (Amendment and Corrigendum to IEEE Std 802.16TM-2004)," Feb. 2006.
doi:10.1109/TAP.2008.919163

3. Bertoni, H. L., Radio Propagation for Modern Wireless Systems, Prentice Hall, 2000.
doi:10.1080/00207210802524302

4. Chizcik, D. and J. Ling, "Propagation over clutter: Physical stochastic model," IEEE Trans. on Antennas and Prop., Vol. 56, No. 4, 1071-1077, 2008.
doi:10.1109/TVT.2004.830142

5. Kara, A., "Human body shadowing variability in short range indoor radio links at 3-11 GHz," Int. Journal of Electronics, Vol. 96, 205-211, 2009.
doi:10.2528/PIER10040806

6. Cuinas, I. and M. G. Sanchez, "Wideband measurements of non-deterministic effects on the BRAN indoor radio channel," IEEE Trans. on Vehicular Technology, Vol. 53, No. 4, 1167-1175, Jul. 2004.
doi:10.2528/PIERB08031209

7. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.1049/iet-map.2010.0158

8. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetic Research B, Vol. 6, 123-134, 2008.

9. Gomez, P., I. Cuinas, A. V. Alejos, M. G. Sanchez, and J. A. Gay- Fernandez, "Analysis of the performance of vegetation barriers to reduce electromagnetic pollution," IET Microwaves, Antennas and Propagation, Vol. 5, No. 6, 651-663, May 2011.

10. Valcarce, A. and J. Zhang, "Empirical indoor-to-outdoor propagation model for residential areas at (0.9-3.5) GHz," IEEE Ant. and Wire. Prop. Lett., Vol. 9, 682-685, Jul. 2010.

11., ITU-R Recommendation 1238-6, "Propagation data and prediction methods for the planning of indoor radio communication systems and the radio local area networks in the frequency range 900 MHz to 100 GHz," Geneva, 2001.
doi: --- Either ISSN or Journal title must be supplied.

12. Perez-Vega, C., "Simple approach to a statistical path loss model for indoor communications," 27th European Conference and Exhibition: Bridging the Gap between Industry and Academia, Vol. 1, 617-623, Sep. 8-12, 1997.
doi: --- Either ISSN or Journal title must be supplied.