Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-02

Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries

By Zi Wei Ni, Meixiang Zhang, Jing Li, and Qicong Wang
Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012
doi:10.2528/PIERM11093004

Abstract

Finding sparsifying transforms is an important prerequisite of compressed sensing (CS) theory. It is directly related to the reconstruction accuracy. In this work, we propose a new dictionary learning (DL) algorithm to improve the accuracy of CS reconstruction. In the proposed algorithm, Least Angle Regression (LARS) algorithm and an approximate SVD method (ASVD) are respectively used in the two stages. In addition, adaptive sparsity constraint is used in the sparse representation stage, to obtain sparser representation coefficient, which further improves the dictionary update stage. With these data-driven adaptive dictionaries as sparsifying transforms for image compressed sensing, results of experiments demonstrate noteworthy outperformance in peak signal-to-noisy ratio (PSNR), compared to CS based on dictionaries learned by K-SVD, in the sampling rate of 0.2-0.5. Besides, visual appearance of reconstruction detail at low sampling rate improves, for reducing of `block' effect.

Citation


Zi Wei Ni, Meixiang Zhang, Jing Li, and Qicong Wang, "Image Compressed Sensing Based on Data-Driven Adaptive Redundant Dictionaries," Progress In Electromagnetics Research M, Vol. 22, 73-89, 2012.
doi:10.2528/PIERM11093004
http://www.jpier.org/PIERM/pier.php?paper=11093004

References


    1. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
    doi:10.1109/TIT.2005.862083

    2. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
    doi:10.1109/TIT.2006.871582

    3. Candes, E. J. and T. Tao, "Decoding by linear programming ," IEEE Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, 2005.
    doi:10.1109/TIT.2005.858979

    4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
    doi:10.1109/MSP.2007.914731

    5. Davenport, M., M. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to Compressed Sensing, Cambridge University Press, 2011.

    6. Fornasier, M. and H. Rauhut, Compressive Sensing, Springer, 2011.

    7. Tsaig, Y. and D. L. Donoho, "Extensions of compressed sensing," Signal Processing, Vol. 86, No. 3, 549-571, 2006.
    doi:10.1016/j.sigpro.2005.05.029

    8. Gan, L., "Block compressed sensing of natural images," Proc. Int. Conf. on Digital Signal Processing, 403-406, Cardiff, UK, 2007.

    9. Lustig, M., D. Donoho, and J. M. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magn. Reson. Med., Vol. 58, No. 6, 1182-1195, 2007.
    doi:10.1002/mrm.21391

    10. Candes, E. J., Y. C. Eldar, D. Needell, and P. Randall, "Compressed sensing with coherent and redundant dictionaries," Applied and Computational Harmonic Analysis, Vol. 31, No. 1, 59-73, 2010.
    doi:10.1016/j.acha.2010.10.002

    11. Rauhut, H. , K. Schnass, and P. Vandergheynst, "Compressed sensing and redundant dictionaries," IEEE Trans. Inf. Theory, Vol. 54, No. 5, 2210-2219, 2008.
    doi:10.1109/TIT.2008.920190

    12. Chen, S. S. , D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 2001.
    doi:10.1137/S003614450037906X

    13. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
    doi:10.1109/TSP.2006.881199

    14. Ravishankar, S. and Y. Bresler, "MR image reconstruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, No. 5, 1028-1041, 2011.
    doi:10.1109/TMI.2010.2090538

    15. Bilgin, A., Y. Kim, F. Liu, and M. S. Nadar, "Dictionary design for compressed sensing MRI," Proc. ISMRM, 2010.

    16. Xu, T. T. , Z. Yang, and X. Shao, "Adaptive compressed sensing of speech signal based on data-driven dictionary," Conf. 15-th Asia-Pacific, 2009.

    17. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proc. AsilomarSS, Vol. 1, 40-44, 1993.

    18. Tibshirani , R., "Regression shrinkage and selection via the lasso," J. Royal. Statist. Soc. B, Vol. 58, No. 1, 267-288, 1996.

    19. Gorodnitsky, I. and B. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Processing, Vol. 45, No. 3, 600-616, 1997.
    doi:10.1109/78.558475

    20. Wipf, D. P. and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Processing, Vol. 52, No. 8, 2153-2164, 2004.
    doi:10.1109/TSP.2004.831016

    21. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE (Special Issue on Applications of Sparse Representation and Compressive Sensing), Vol. 98, No. 6, 948-958, 2010.

    22. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., Vol. 15, No. 12, 3736-3745, 2006.
    doi:10.1109/TIP.2006.881969

    23. Protter, M. and M. Elad, "Image sequence denoising via sparse and redundant representations," IEEE Trans. Image Process. , Vol. 18, No. 1, 27-36, 2009.
    doi:10.1109/TIP.2008.2008065

    24. Mairal, J. , M. Elad, and G. Sapiro, "Sparse representation for color image restoration," IEEE Trans. Image Process., Vol. 17, No. 1, 53-69, 2008.
    doi:10.1109/TIP.2007.911828

    25. Mairal, J. , G. Sapiro, and M. Elad, "Learning multiscale sparse representations for image and video restoration," SIAM Multiscale Model. Simulat., Vol. 7, No. 1, 214-241, 2008.
    doi:10.1137/070697653

    26. Bryt, O. and M. Elad, "Compression of ficial images using the K-SVD algorithm," J. Visual Communication and Image Representation, Vol. 19, No. 4, 270-283, 2008.
    doi:10.1016/j.jvcir.2008.03.001

    27. Olshausen, B. A. and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vis. Res., Vol. 37, No. 23, 3311-3325, 1997.
    doi:10.1016/S0042-6989(97)00169-7

    28. Engan, K., S. Aase, and J. Hakon Husoy, "Method of optimal directions for frame design," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'99), 1999.

    29. Tosic, I. and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., Vol. 28, No. 2, 27-38, 2011.
    doi:10.1109/MSP.2010.939537

    30. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (non-orthogonal) dictionaries via minimization," Proc. Nat. Aca. Sci., Vol. 100, No. 5, 2197-2202, 2003.
    doi:10.1073/pnas.0437847100

    31. Gribonval, R. and M. Nielsen, "Sparse representation in unions of bases," IEEE Trans. Inf. Theory, Vol. 49, No. 12, 3320-3325, 2003.
    doi:10.1109/TIT.2003.820031

    32. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, 2004.
    doi:10.1109/TIT.2004.834793

    33. Efron, B. , T. Hastie, I. Johnston, and R. Tibshirani, "Least angle regression," Ann. Statist., Vol. 32, No. 2, 407-499, 2004.
    doi:10.1214/009053604000000067

    34. Rubinstein, R., M. Zibulevsky, and M. Elad, "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit," Technical Report-CS Technion., 2008.

    35. Chen, Y. , X. Ye, and F. Huang, "A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data," Inverse Problems Image, Vol. 4, No. 2, 223-240, 2010.
    doi:10.3934/ipi.2010.4.223

    36. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing ," IEEE Trans. Signal Processing, Vol. 56, No. 6, 2346-2356, 2008.
    doi:10.1109/TSP.2007.914345

    37. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., Vol. 19, No. 1, 53-63, 2010.
    doi:10.1109/TIP.2009.2032894