Vol. 22
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-22
Robust Techniques for Coherent Change Detection Using Cosmo-Skymed SAR Images
By
Progress In Electromagnetics Research M, Vol. 22, 219-232, 2012
Abstract
The satellite-borne SAR (Synthetic Aperture Radar) is a quite promising tool for high-resolution geo-surface measurement. Recently, there has been a great interest in Coherent Change Detection (CCD), where the coherence between two SAR images is evaluated and analyzed to detect surface changes. The sample coherence threshold may be used to distinguish between the changed and unchanged regions in the scene. Using COSMO-SkyMed (CSK) images, we show that for changed areas, the coherence is low but not completely lost. This situation, which is caused by the presence of bias in the coherence estimate, considerably degrades the performance of the sample threshold method. To overcome this problem, robust detection in inhomogeneous data must be considered. In this work, we propose the application and improvement of three techniques: Mean Level Detector (MLD), Ordered Statistic (OS) and Censored Mean Level Detector (CMLD), all applied to coherence in order to detect surface changes. The probabilities of detection and false alarm are estimated experimentally using high-resolution CSK images. We show that the proposed method, CMLD with incorporation of guard cells (GC) in the range direction, is robust and allows for nearly 4% higher detection probability in case of low false alarm probability.
Citation
Azzedine Bouaraba, Arezki Younsi, Aichouche Belhadj Aissa, Marc Acheroy, Nada Milisavljevic, and Damien Closson, "Robust Techniques for Coherent Change Detection Using Cosmo-Skymed SAR Images," Progress In Electromagnetics Research M, Vol. 22, 219-232, 2012.
doi:10.2528/PIERM11110707
References

1. Just, D., "Phase statistics of interferograms with applications to synthetic aperture radar," Appl. Opt., Vol. 33, No. 20, 4361-4368, 1994.
doi:10.1364/AO.33.004361

2. Rignot, E. J., "Change detection techniques for ERS-1 SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 31, No. 4, 896-906, 1993.
doi:10.1109/36.239913

3. Preiss, M., "A change detection statistic for repeat pass inteferometric SAR," Proc. ICASSP, 938-940, 2003.

4. Zebker, H. A., "Decorrelation in interferometric radar echoes," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 5, 950-959, 1992.
doi:10.1109/36.175330

5. Touzi, R., "Coherence estimation for SAR imagery," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 1, 135-149, 1999.
doi:10.1109/36.739146

6. Preiss, M., "Scene coherency at X-band from repeat pass polarimetric interferometry," Proc. IEEE Int. Geosci. Remote Sens. Symp., 1081-1084, 2005.

7. Oishi, N., "A coherence improvement technique for coherent change detection in SAR interferometry," Proc. of the 6th European Radar Conference, Rome, Italy, September 30-October 2, 2009.

8. Sabry, R., "A new coherency formalism for change detection and phenomenology in SAR imagery: A field approach," IEEE Geosc. and Remote Sens. Letters, Vol. 6, No. 3, 458-462, 2009.
doi:10.1109/LGRS.2009.2016359

9. Hochino, T., "Coherent change detection with complex logarithm transformation on SAR imagery," SICE Annual Conference, Taipei, Taiwan, August 18-21, 2010.

10. Papathanassiou, K. P., "Single-baseline polarimetric SAR inter-ferometry," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2352-2363, 2001.
doi:10.1109/36.964971

11. Gatelli, F., "The wavenumber shift in interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 4, 855-865, 1994.
doi:10.1109/36.298013

12. Hanssen, R. F., Radar Interferometry, Data Interpretation and Error Analysis, Kluwer Academic Publishers, 2002.

13. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Trans. on Aeros. and Elect. Syst., Vol. 19, No. 4, 608-621, 1983.
doi:10.1109/TAES.1983.309350

14. Rickard, J. T., "Adaptive detection algorithms for multiple target situations," IEEE Trans. on Aeros. and Electr. Syst., Vol. 13, No. 10, 338-343, 1977.
doi:10.1109/TAES.1977.308466