Vol. 23

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Microwave Imaging of Dielectric Cylinders Using Level Set Method and Conjugate Gradient Algorithm

By Khaled Grayaa
Progress In Electromagnetics Research M, Vol. 23, 195-205, 2012


In this paper, a level set method for shape reconstruction problems is considered. By measuring the scattered field, we tried to retrieve the localisation and permittivity of buried objects. The forward problem is solved by the method of moments. For solving the inverse problem, we adopt an evolution approach. Therefore, we introduce a level set technique witch is flexible in handling complex shape changes. A conjugate gradient-based method is used in order to define iterative updates for the level set functions with the goal to minimize a given least squares data misfit functional. In particular, the proposed method is capable of creating new holes inside the design domain, which makes the final design independent of Experimental results demonstrate the feasibility and effectiveness of the proposed technique.


Khaled Grayaa, "Microwave Imaging of Dielectric Cylinders Using Level Set Method and Conjugate Gradient Algorithm," Progress In Electromagnetics Research M, Vol. 23, 195-205, 2012.


    1. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 2, 449-458, Feb. 2010.

    2. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Phys. Med. Biol., Vol. 37, No. 8, 4210-26, Aug. 2010.

    3. Cao, C., L. Nie, C. Lou, and D. Xing, "The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi," Phys. Med. Biol., Vol. 55, No. 17, 5203-12, Sep. 2010.

    4. Yedlin, M. J., A. Cresp, C. Pichot, I. Aliferis, J. Y. Dauvignac, and S. Gaffet, "Ultra-wideband microwave imaging of heterogeneities," Journal of Applied Geophysics, Vol. 68, No. 1, 17-25, May 2009.

    5. Remis, R. F. and P. M. Van den Berg, "On the equivalence of the Newton-Kantorovich and distorted Born methods," Inverse Problems, Vol. 16 2000, PII: S0266-5611(00)08356-8..

    6. Joachimowicz, N., J. J. Mallorqui, J. C. Bolomey, and A. Broquetas, "Convergence and stability assessment of newton-kantorovich reconstruction algorithms for microwave tomography," IEEE Trans. on Medical Imaging, Vol. 17, No. 4, 562-570, Aug. 1998.

    7. Omrogbe, D. E. A. and A. A. Osagiede, "Preconditionning the modified conjugate gradient method," Global Journal of Mathematical Sciences, Vol. 8, No. 2, 2009.

    8. Mhamdi, B., K. Grayaa, and T. Aguili, "Microwave imaging of dielectric cylinders from experimental scattering data based on the genetic algorithms, neural networks and a hybrid micro genetic algorithm with conjugate gradient," Int. J. of Electron. Commun. (AEU), Vol. 65, No. 2, 140-147, Feb. 2011.

    9. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

    10. Osher, S. and J. Sethian, "Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formula-tions," J. Comput. Phys., Vol. 79, No. 1, 12-49, 1988.

    11. Chunming, L., X. Chenyang, G. Changfeng, and D. F. Martin, "Distance regularized level set evolution and its application to image segmentation," IEEE Trans. on Image Processing, Vol. 19, No. 12, 3243-3253, Dec. 2010.

    12. Brodersen, A., K. Museth, S. Porumbescu, and B. Budge, "Geometric Texturing Using Level Sets," IEEE Trans. on Visualization and Computer Graphics, Vol. 14, No. 2, 277-288, Mar.-Apr. 2008.

    13. Young, S. K., K. B. Jin, and P. Il Han, "A level set method for shape optimization of electromagnetic systems," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1466-1469, Mar. 2009.

    14. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.

    15. Hu, J.-L., Z. Wu, H. McCann, L. E. Davis, and C.-G. Xie, "Quasi-three-dimensional method of moments for analyzing electromagnetic wave scattering in microwave tomography systems," IEEE Sensors Journal, Vol. 5, No. 2, 216-223, Apr. 2005.

    16. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.

    17. Osher, S. and R. Fedkiw, "Level set methods and dynamic implicit surface," Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 2003.