Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-05-01

Optical Characterization of 50 Hz Atmospheric Pressure Single Dielectric Barrier Discharge Plasma

By Muhammad Yasin Naz, Abdul Ghaffar, Najeeb Ur Rehman, Shazia Shukrullah, and M. A. Ali
Progress In Electromagnetics Research M, Vol. 24, 193-207, 2012
doi:10.2528/PIERM12012403

Abstract

A low frequency (50 Hz) dielectric barrier discharge (DBD) system with a single dielectric cover on copper coil anode is designed to generate and sustain the microdischarge plasma which is very practical for material processing applications. The DBD system is powered by a high tension ac source consisting of a conventional step up transformer and variac. The dielectric barriers (quartz and glass) between the conducting electrodes appreciably influences the discharge plasma characterized by optical emission spectroscopy technique. Using intensity ratio method, the electron temperature and electron number density are determined from recorded spectra as function of ac input voltage, type and thickness of dielectric barrier and inter-electrode gap. It is observed that both the electron temperature and electron number density increase with the increase in ac input voltage and εr/d ratio, while a decreasing trend is observed with increase in inter-electrode gap.

Citation


Muhammad Yasin Naz, Abdul Ghaffar, Najeeb Ur Rehman, Shazia Shukrullah, and M. A. Ali, "Optical Characterization of 50 Hz Atmospheric Pressure Single Dielectric Barrier Discharge Plasma," Progress In Electromagnetics Research M, Vol. 24, 193-207, 2012.
doi:10.2528/PIERM12012403
http://www.jpier.org/PIERM/pier.php?paper=12012403

References


    1. Kostov, K. G., R. Y. Honda, L. M. S. Alves, and M. E. Kayama, "Characterization of dielectric barrier discharge reactor for material treatment," Brazilian Journal of Physics, Vol. Brazilia.

    2. Pandey, R. S. and D. K. Singh, "Study of electromagnetic ion-cyclotron instability in a magnetoplasma," Progress In Electromagnetics Research M, Vol. 14, 147-161, 2010.
    doi:10.2528/PIERM10052501

    3. Pandey, R. S., "Cold plasma injection on VLF wave mode for relativistic magnetoplasma with A.C. Electric Field," Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008.
    doi:10.2528/PIERC08022501

    4. Yongh, K., M. S. Cha, W. H. Shin, and Y. H. Song, "Characterization of dielectric barrier glow discharges with a low frequency generator in nitrogen," Journal of the Korean Physical Society, Vol. 43, No. 5, 2003.

    5. Shi, L., B. L. Guo, Y. M. Liu, and J. T. Li, "Characterization of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
    doi:10.2528/PIER11110201

    6. Osawa, N. and Y. Yoshioka, "Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure," IEEE Transactions on Plasma Science, Vol. 40, No. 1, 2011.

    7. Meiners, , A., M. Leck, and B. Adel, "Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization," Review of Science Instruments, Vol. 81, 113507, 2010.
    doi:10.1063/1.3501963

    8. Anghel, S. D., "Generation and electrical diagnostic of an atmospheric-pressure dielectric barrier discharge," IEEE Trans-actions on Plasma Science, Vol. 39, No. 3, 2011.

    9. Kogelschatz, U., "Atmospheric-pressure plasma technology," Plasma Physics and Controlled Fusion, Vol. 46, No. B63, 2004.

    10. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
    doi:10.2528/PIERB10061508

    11. Khan, F. U., N. U. Rehman, S. Naseer, M. A. Naveed, A. Qayyum, N. A. D. Khattak, and M. Zakaullah, "Diagnostic of 13.56MHz RF sustained Ar-N2 plasma by optical emission spectroscopy," Eur. Physic, J. Appl. Phys., Vol. 45, 11002, 2009.

    12. Costa, E. M. M., "Parasitic capacitances on planar coil," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2339-2350, 2009.
    doi:10.1163/156939309790416198

    13. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
    doi:10.2528/PIER09031608

    14. Chapelle, P., T. Czerwiec, and J. P. Bellot, "Plasma diagnostic by emission spectroscopy during vacuum arc remelting," Plasma Source Sci. Technol., Vol. 11, 303-304, 2002.

    15. Jandieri, G. V., A. Ishimaru, V. Jandieri, and N. N. Zhukova, "Depolarization of metric radio signals and the spatial spectrum of scattered radiation by magnetized turbulent plasma slab," Progress In Electromagnetics Research, Vol. 112, 63-75, 2011.

    16. Fozza, A. C., M. Moisan, and M. R. Wertheimer, "Vacuum ultraviolet to visible emission from hydrogen plasma: Effect of excitation frequency," J. Appl. Phys., Vol. 88, No. 20, 2000.

    17. Heald, M. A. and C. B. Waharton, Plasma Diagnostics with Microwaves, John Wiley & Sons Inc., New York , 1978.

    18. Naz, M. Y., A. Ghaffar, N. U. Rehman, M. Azam, S. Shukrullah, A. Qayyum, and M. Zakaullah-, "Symmetric and asymmetric double langmuir probes characterization of radio frequency inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 115, 207-221, 2011.

    19. Naz, M. Y., A. Ghaffar, N. U. Rehman, S. Naseer, and M. Zakaullah, "Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 114, 113-128, 2011.

    20. Ai, X., Y. Han, C. Y. Li, and X. W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.

    21. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinusoidal electron density profile," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
    doi:10.2528/PIERL09061707

    22. Pavelyev, A. G., Y.-A. Liou, J. Wickert, K. Zhang, C.-S. Wang, and Y. Kuleshov, "Analytical model of electromagnetic waves propagation and location of inclined plasma layers using occultation data," Progress In Electromagnetics Research, Vol. 106, 177-202, 2010.
    doi:10.2528/PIER10042707

    23. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
    doi:10.2528/PIER04080901

    24. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer Structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
    doi:10.2528/PIER09091708