Vol. 24
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-05-01
Optical Characterization of 50 Hz Atmospheric Pressure Single Dielectric Barrier Discharge Plasma
By
Progress In Electromagnetics Research M, Vol. 24, 193-207, 2012
Abstract
A low frequency (50 Hz) dielectric barrier discharge (DBD) system with a single dielectric cover on copper coil anode is designed to generate and sustain the microdischarge plasma which is very practical for material processing applications. The DBD system is powered by a high tension ac source consisting of a conventional step up transformer and variac. The dielectric barriers (quartz and glass) between the conducting electrodes appreciably influences the discharge plasma characterized by optical emission spectroscopy technique. Using intensity ratio method, the electron temperature and electron number density are determined from recorded spectra as function of ac input voltage, type and thickness of dielectric barrier and inter-electrode gap. It is observed that both the electron temperature and electron number density increase with the increase in ac input voltage and εr/d ratio, while a decreasing trend is observed with increase in inter-electrode gap.
Citation
Muhammad Yasin Naz, Abdul Ghaffar, Najeeb Ur Rehman, Shazia Shukrullah, and M. A. Ali, "Optical Characterization of 50 Hz Atmospheric Pressure Single Dielectric Barrier Discharge Plasma," Progress In Electromagnetics Research M, Vol. 24, 193-207, 2012.
doi:10.2528/PIERM12012403
References

1. Kostov, K. G., R. Y. Honda, L. M. S. Alves, and M. E. Kayama, "Characterization of dielectric barrier discharge reactor for material treatment," Brazilian Journal of Physics, Vol. Brazilia.

2. Pandey, R. S. and D. K. Singh, "Study of electromagnetic ion-cyclotron instability in a magnetoplasma," Progress In Electromagnetics Research M, Vol. 14, 147-161, 2010.
doi:10.2528/PIERM10052501

3. Pandey, R. S., "Cold plasma injection on VLF wave mode for relativistic magnetoplasma with A.C. Electric Field," Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008.
doi:10.2528/PIERC08022501

4. Yongh, K., M. S. Cha, W. H. Shin, and Y. H. Song, "Characterization of dielectric barrier glow discharges with a low frequency generator in nitrogen," Journal of the Korean Physical Society, Vol. 43, No. 5, 2003.

5. Shi, L., B. L. Guo, Y. M. Liu, and J. T. Li, "Characterization of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

6. Osawa, N. and Y. Yoshioka, "Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure," IEEE Transactions on Plasma Science, Vol. 40, No. 1, 2011.

7. Meiners, , A., M. Leck, and B. Adel, "Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization," Review of Science Instruments, Vol. 81, 113507, 2010.
doi:10.1063/1.3501963

8. Anghel, S. D., "Generation and electrical diagnostic of an atmospheric-pressure dielectric barrier discharge," IEEE Trans-actions on Plasma Science, Vol. 39, No. 3, 2011.

9. Kogelschatz, U., "Atmospheric-pressure plasma technology," Plasma Physics and Controlled Fusion, Vol. 46, No. B63, 2004.

10. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508

11. Khan, F. U., N. U. Rehman, S. Naseer, M. A. Naveed, A. Qayyum, N. A. D. Khattak, and M. Zakaullah, "Diagnostic of 13.56MHz RF sustained Ar-N2 plasma by optical emission spectroscopy," Eur. Physic, J. Appl. Phys., Vol. 45, 11002, 2009.

12. Costa, E. M. M., "Parasitic capacitances on planar coil," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2339-2350, 2009.
doi:10.1163/156939309790416198

13. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608

14. Chapelle, P., T. Czerwiec, and J. P. Bellot, "Plasma diagnostic by emission spectroscopy during vacuum arc remelting," Plasma Source Sci. Technol., Vol. 11, 303-304, 2002.

15. Jandieri, G. V., A. Ishimaru, V. Jandieri, and N. N. Zhukova, "Depolarization of metric radio signals and the spatial spectrum of scattered radiation by magnetized turbulent plasma slab," Progress In Electromagnetics Research, Vol. 112, 63-75, 2011.

16. Fozza, A. C., M. Moisan, and M. R. Wertheimer, "Vacuum ultraviolet to visible emission from hydrogen plasma: Effect of excitation frequency," J. Appl. Phys., Vol. 88, No. 20, 2000.

17. Heald, M. A. and C. B. Waharton, Plasma Diagnostics with Microwaves, John Wiley & Sons Inc., New York , 1978.

18. Naz, M. Y., A. Ghaffar, N. U. Rehman, M. Azam, S. Shukrullah, A. Qayyum, and M. Zakaullah-, "Symmetric and asymmetric double langmuir probes characterization of radio frequency inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 115, 207-221, 2011.

19. Naz, M. Y., A. Ghaffar, N. U. Rehman, S. Naseer, and M. Zakaullah, "Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma," Progress In Electromagnetics Research, Vol. 114, 113-128, 2011.

20. Ai, X., Y. Han, C. Y. Li, and X. W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.

21. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinusoidal electron density profile," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
doi:10.2528/PIERL09061707

22. Pavelyev, A. G., Y.-A. Liou, J. Wickert, K. Zhang, C.-S. Wang, and Y. Kuleshov, "Analytical model of electromagnetic waves propagation and location of inclined plasma layers using occultation data," Progress In Electromagnetics Research, Vol. 106, 177-202, 2010.
doi:10.2528/PIER10042707

23. Qian, Z. H., R.-S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

24. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer Structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
doi:10.2528/PIER09091708