Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-04-09

A Simple Technique for Optimizing the Implementation of the Aperture Theorem Based on Equivalence Principle

By Sihai Qiu, Ying-Hua Lu, Ning Liu, and Peng Li
Progress In Electromagnetics Research M, Vol. 24, 97-111, 2012
doi:10.2528/PIERM12022009

Abstract

The electromagnetic characteristics of the aperture located on a PEC (Perfect Electric Conductor) cavity is an important and challenged research in CEM(Computational Electromagnetics) and practical applications. Researches have been done well when the aperture locates on a large flat surface. But the complex slots and apertures are still difficult to analyze, such as a thin long slot. Thin long slots present on different kinds of the structures, such as missiles, aircrafts, handset equipments, and computers. And, most of the surfaces are non-flat. Furthermore, the multiscale characteristic of the structure makes the modeling very difficult in such cases. It becomes an increasing interested research recently. A better result can be obtained by generating much more denser meshes. Because of the complexity of the algorithm and ill-posed matrix problem, It is not an optimized option. In order to get a better use of the aperture theorem in the multiscale problems, a separation technique is developed in this paper. By using readjustment of the equivalence electric and magnetic currents, a simplified model is proposed. Arbitrary shaped aperture can be very well handled through this method, especially the thin long slots.

Citation


Sihai Qiu, Ying-Hua Lu, Ning Liu, and Peng Li, "A Simple Technique for Optimizing the Implementation of the Aperture Theorem Based on Equivalence Principle," Progress In Electromagnetics Research M, Vol. 24, 97-111, 2012.
doi:10.2528/PIERM12022009
http://www.jpier.org/PIERM/pier.php?paper=12022009

References


    1. Harrington, R. and J. Mautz, "A generalized network formulation for aperture problems," IEEE Trans. Antennas Propag., Vol. 24,=, 870-873, Nov. 1976.

    2. Auckland, D. T. and R. F. Harrington, "Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case," IEEE Trans. Microwave Theory and Techniques, Vol. 26, 499-505, Jul. 1978.
    doi:10.1109/TMTT.1978.1129422

    3. Liang, C.-H. and D. Cheng, "Electromagnetic fields coupled into a cavity with a slot-aperture under resonant conditions," IEEE Trans. Antennas Propag., Vol. 30, 664-672, Jul. 1982..
    doi:10.1109/TAP.1982.1142881

    4. Harrington, R., "Resonant behavior of a small aperture backed by a conducting body," IEEE Trans. Antennas Propag., Vol. 30, 205-212, Mar. 1982.
    doi:10.1109/TAP.1982.1142761

    5. Harrington, R. and D. Auckland, "Electromagnetic transmission through narrow slots in thick conducting screens," IEEE Trans. Antennas Propag., Vol. 28, 616-622, Sep. 1980.
    doi:10.1109/TAP.1980.1142382

    6. Hsi, S., R. Harrington, and J. Mautz, "Electromagnetic coupling to a conducting wire behind an aperture of arbitrary size and shape," IEEE Trans. Antennas Propag., Vol. 33, 581-587, Jun. 1985.
    doi:10.1109/TAP.1985.1143628

    7. Umashankar, K., A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Trans. Antennas Propag., Vol. 35, 1248-1257, Nov. 1987.
    doi:10.1109/TAP.1987.1144000

    8. Warne, L. K. and K. C. Chen, "Equivalent antenna radius for narrow slot apertures having depth," IEEE Trans. Antennas Propag., Vol. 37, 824-834, Jul. 1989.
    doi:10.1109/8.29376

    9. Wang, T., R. F. Harrington, and J. R. Mautz, "Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies," IEEE Trans. Antennas Propag., Vol. 38, 1805-1814, Nov. 1990.
    doi:10.1109/8.102743

    10. Gilbert, J. and R. Holland, "Implementation of the thin-slot formalism in the finite-difference EMP code THREDII," IEEE Trans. Nucl. Sci., Vol. 28, No. 6, 4269-4274, Dec. 1981.
    doi:10.1109/TNS.1981.4335711

    11., "An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2530-2533, Sep. 2003.
    doi:10.1109/TAP.2003.816382

    12. Gkatzianas, M. A., "The Gilbert-Holland FDTD thin slot model revisited: An alternative expression for the in-cell capacitance," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 5, 219-221, May 2004.
    doi:10.1109/LMWC.2004.827843

    13. Wang, B.-Z., "Enhanced thin-slot formalism for the FDTD analysis of thin-slot penetration," IEEE Microw. Guided Wave Lett., Vol. 5, No. 5, 142-143, May 1995.
    doi:10.1109/75.374078

    14. Xiong, R., B. Chen, Q. Yin, and Z.-Y. Cai, "Improved formalism for the FDTD analysis of thin-slot penetration by equivalence principle," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 655-657, 2011.
    doi:10.1109/LAWP.2011.2160519

    15. Harington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

    16. Booysen, A. J., "Aperture theory and the equivalence theorem," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1258-1261, Aug. 1999.

    17. Booysen, A. J., "Aperture theory and the equivalence principle ," IEEE Antennas and Propagation Magazine, Vol. 45, 29-40, Jun. 2003.
    doi:10.1109/MAP.2003.1232161

    18. Chen, K. M., "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory and Techniques, Vol. 37, 1576-1581, Oct. 1989.

    19. Anastassiu, H. T., "A review of electromagnetic scattering analysis for inlets, cavities, and open ducts," IEEE Trans. Antennas Propag., Vol. 45, 27-40, Dec. 2003.

    20. Wu, G., X. G. Zhang, and B. Liu, "A hybrid method for predicting the shielding e®ectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1157-1169, 2010.
    doi:10.1163/156939310791585972

    21. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
    doi:10.1109/TAP.1982.1142818

    22. Wilton, D. , S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains ," IEEE Trans. Antennas Propag., Vol. 32, 276-281, May 1984.
    doi:10.1109/TAP.1984.1143304

    23. Hodges, R. E. and Y. Rahmat-Sarnii, "Evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, Jan. 1997.
    doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

    24. Caorsi, S., D. Moreno, and F. Sidoti, "Theoretical and numerical treatment of surface integrals involving the free-space Green's function," IEEE Trans. Antennas Propag., Vol. 41, 1296-1301, Sep. 1993.
    doi:10.1109/8.247757

    25. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., Vol. 41, 1448-1455.
    doi:10.1109/8.247786

    26. Sievers, D., T. F. Eibert, and V. Hansen, "correction to `on the calculation of potential integrals for linear source distributions on triangular domains'," EEE Trans. Antennas Propag., Vol. 53, 3113, Sep. 2005.
    doi:10.1109/TAP.2005.854549

    27. Ogdanov, F. G. , R. G. Jobava, and S. Frei, "About evaluation of the potential integrals for near field calculations in MoM solution to EFIE for triangulated surfaces, Direct and inverse problems of electromagnetic and acoustic wave theory," Proceedings of the 7th International Seminar/Workshop on DIPED, 113-117, 2002.