Vol. 24

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-04-21

Radar Identification of Hostile Fire by Means of the Electromagnetic Complex Natural Resonances of Projectiles

By Stuart William Harmer, Shawn Edward Cole, and Nicholas John Bowring
Progress In Electromagnetics Research M, Vol. 24, 167-178, 2012
doi:10.2528/PIERM12031305

Abstract

The authors discuss and demonstrate the feasibility of using ultra wide band microwave radar to detect and identify small arms fire. Detection and tracking is by standard radar techniques, but identification is carried out by exciting the projectiles Complex Natural Resonances and using this aspect independent information to assign a caliber to the incoming projectiles. The typical sizes of small arms projectiles (calibers 5.56 mm through to 13 mm) imply that ultra wide band illumination in the microwave region of the spectrum between 1.5-5.5 GHz is required to excite these object's fundamental resonances. The authors give a discussion of the effects of motion on the quality of the complex natural resonance data obtainable and present both simulated and laboratory data for the radar cross section of three different caliber projectiles (5.56 mm, 7.62 mm and 13 mm).

Citation


Stuart William Harmer, Shawn Edward Cole, and Nicholas John Bowring, "Radar Identification of Hostile Fire by Means of the Electromagnetic Complex Natural Resonances of Projectiles," Progress In Electromagnetics Research M, Vol. 24, 167-178, 2012.
doi:10.2528/PIERM12031305
http://www.jpier.org/PIERM/pier.php?paper=12031305

References


    1. Baum, C. E., "On the singularity expansion method for the solution of electromagnetic interaction problems,", Interaction Notes, Note 88, Air Force Weapons Laboratory, 1971.

    2. Baum, C. E., "The singularity expansion method: Background and developments," IEEE Antennas and Propagation Society Newsletter, 1986.
    doi:10.2528/PIER99040501

    3. Wang, Y. and N. Shuley, "Complex resonant frequencies for the identification of simple objects in free space and lossy environments," Progress In Electromagnetics Research, Vol. 27, 1-18, 2000.
    doi:10.1163/1569393053305062

    4. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Application, Vol. 19, No. 5, 655-669, 2005.
    doi:10.2528/PIER02100201

    5. Toribio, R., J. Saillard, and P. Pouliguen, "Identification of radar targets in resonance zone: E-pulse techniques," Progress In Electromagnetics Research, Vol. 43, 39-58, 2003.
    doi:10.1109/TAES.1975.308051

    6. Berni, A. J., "Target identification by natural resonant estimation," IEEE Trans. Aerospace Electron. Syst., Vol. 11, No. 2, 147-157, 1975.
    doi:10.1002/andp.19083300302

    7. Mie, G., "Beitrage zur optik truber medien, speziell kolloider metallosungen," Annalen der Physik, Vol. 4, No. 25, 377-445, 1908.

    8. Hey, J. S., G. S. Stewart, J. T. Pinson, and P. E. V. Prince, "The scattering of electromagnetic waves by conducting spheres and discs," Proc. Phys. Soc. B, Vol. 69, 1038, 1956.
    doi:10.1109/TAP.2006.886510

    9. Lui, H. and N. V. Shuley, "Radar target identification using a banded E-pulse technique," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3874-3881, 2006.
    doi:10.1049/iet-map.2009.0382

    10. Harmer, S. W., D. A. Andrews, N. D. Rezgui, and N. J. Bowring, "Detection of handguns by their complex natural resonant frequencies," IET Microw. Antennas Propag., Vol. 4, No. 9, 1182-1190, Sep. 2010.
    doi:10.2528/PIER07041602

    11. Chauveau, J., N. de Beaucoudrey, and J. Saillard, "Characterization of perfectly conducting targets in resonance domain with their quality of resonance," Progress In Electromagnetics Research, Vol. 74, 69-84, 2007.
    doi:10.1109/PROC.1965.4068

    12. Kennaugh, E. M. and D. L. Moffatt, "Transient and impulse response approximations," Proceedings of the IEEE, Vol. 53, 893-901, Aug. 1965.
    doi:10.1109/TAES.1976.308260

    13. Chuang, C. W. and D. L. Moffatt, "Natural resonances of radar targets via Prony's method and target discrimination," IEEE Trans. Aero. and Elect. Sys., Vol. 12, No. 5, 583-589, 1976.
    doi:10.1109/5.104223

    14. Baum, C. E., et al., "The singularity expansion method and its application to target identification," Proc. IEEE, Vol. 79, No. 10, 1481-1492, 1991.
    doi:10.1049/iet-rsn.2008.0112

    15. Secmen, M. and G. Turhan-Sayan, "Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm," IET Radar, Sonar and Navig., Vol. 3, No. 6, 583-595, 2009.
    doi:10.1109/8.18710

    16. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 229-234, 1989.
    doi:10.1109/TAP.2002.807947

    17. Bray, M. G., D. H.Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1732-1742, Dec. 2002.
    doi:10.1109/PROC.1973.8997

    18. Richter, J. H. and D. R. Jensen, "Radar cross-section measurements of insects," Proc. IEEE, Vol. 6, 143-144, 1973.

    19. Wilton, D. R. and K. R. Umashankar, "Parametric study of an L-shaped wire using thesingularity expansion method,", Interaction Notes, Note 152, Air Force Weapons Laboratory, 1973.

    20. Baum, C. E., "Concerning the identification of buried dielectric targets,", Interaction Notes, Note 504, Philips Laboratory, Jul. 24, 1994.

    21. Baum, C. E., "Combining polarimetry with SEM in radar backscattering for target identification,", Interaction Notes, Note 585, Air Force Weapons Laboratory, May 23, 2003.
    doi:10.1109/5.104223

    22. Baum, C. E., et al., "The singularity expansion method and its application to target identification," Proc. IEEE, 1481-1492, 1991.