Vol. 25
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-20
Moving Target Tracking Using Time Reversal Method
By
Progress In Electromagnetics Research M, Vol. 25, 39-52, 2012
Abstract
Time reversal focusing of electromagnetic waves is investigated in case of source motion. We extract analytical formulation of uniformly moving source in presence of ideal time reversal cavity (TRC) and a more realistic model, time reversal mirror (TRM). Similar to the acoustic case, it has been observed that in case of moving point source spatial focusing is still achievable. Furthermore, we also investigate super resolution effects on time reversal (TR) focusing of moving source in continuous random media. Results shows that an increase in (multipath) leads to better focusing resolution of the time-reversed signals.
Citation
Siroos Bahrami, Ahmad Cheldavi, and Ali Abdolali, "Moving Target Tracking Using Time Reversal Method," Progress In Electromagnetics Research M, Vol. 25, 39-52, 2012.
doi:10.2528/PIERM12041801
References

1. Fink, M., "Time reversed acoustics," Physics Today, Vol. 50, No. 3, 34-40, 1997.
doi:10.1063/1.881692

2. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Physical Review Letters, Vol. 92, No. 19, 193904-1, 2004.

3. Ge, G.-D., D. Wang, and B.-Z. Wang, "Subwavelength array of planar triangle monopoles with cross slots based on far-field time reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.

4. Liu, X.-F., B.-Z. Wang, and S.-Q. Xiao, "Electromagnetic subsurface detection using subspace signal processing and half-space dyadic Green's function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/PIER09092902

5. Davy, M., J.-G. Minonzio, J. de Rosny, C. Prada, and M. Fink, "Influence of noise on subwavelength imaging of two close scatterers using time reversal method: Theory and experiments," Progress In Electromagnetics Research, Vol. 98, 333-358, 2009.
doi:10.2528/PIER09071004

6. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.

7. Liu, X.-F., B.-Z. Wang, S.-Q. Xiao, and J. H. Deng, "Performance of impulse radio UWB communications based on time reversal technique," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.
doi:10.2528/PIER07102205

8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113

9. Xiao, S.-Q., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501

10. Zhai, H., S. Jung, and M. Lu, "Wireless communication in boxes with metallic enclosure based on time-reversal ultra-wideband technique: A full-wave numerical study," Progress In Electromagnetics Research, Vol. 101, 63-74, 2010.
doi:10.2528/PIER09112502

11. Xiao, S.-Q., J. Chen, X.-F. Liu, and B.-Z.Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203

12. Mao, X., D.-Y. Zhu, and Z.-D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908

13. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

14. Mao, X., D.-Y. Zhu, L. Ding, and Z.-D. Zhu, "Comparative study of rma and pfa on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
doi:10.2528/PIER10090607

15. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

16. Zheng, W., Z. Zhao, and Z.-P. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202

17. Zheng, W., Z. Zhao, Z.-P. Nie, and Q. H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003

18. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

19. Davy, M., T. Lepetit, J. de Rosny, C. Prada, and M. Fink, "Detection and imaging of human beings behind a wall using the DORT method," Progress In Electromagnetics Research, Vol. 110, 353-369, 2010.
doi:10.2528/PIER10091703

20. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z.-P. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

21. Higley, W. J., P. Roux, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, and M. Stevenson, "Synthetic aperture time-reversal communications in shallow water: Experimental demonstration at sea," Journal of Acoustical Society of America, Vol. 118, No. 4, 2365-2372, 2005.
doi:10.1121/1.2011147

22. Gomes, J. and V. Barroso, "Doppler compensation in underwater channels using time-reversal arrays," IEEE International Con- ference on Acoustics Speech and Signal Processing, 81-84, Hong Kong, China, 2003.

23. Jackson, D. R. and D. R. Dowling, "Phase conjugation in underwater acoustics," Journal of Acoustical Society of America, Vol. 89, No. 1, 171-181, 1990.
doi:10.1121/1.400496

24. Yuanwei, J., J. M. F. Moura, N. O'Donoughue, and J. Harley, "Single antenna time reversal detection of moving target," IEEE International Conference on Acoustics Speech and Signal Processing, 558-3561, 2010.

25. Fouda, A. E. and F. L. Teixeira, "Imaging and tracking of targets in clutter using differential time-reversal techniques," Waves in Complex and Random Media, Vol. 22, No. 1, 1-43, 2012.
doi:10.1080/17455030.2012.645138

26. De Rosny, J., G. Lerosey, and M. Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3139-3149, 2010.
doi:10.1109/TAP.2010.2052567

27. Yavuz, M. E. and F. L. Teixeira, "A numerical study of time-reversed UWB electromagnetic waves in continuous random media," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 43-46, 2005.
doi:10.1109/LAWP.2005.844117

28. Yavuz, M. E. and F. L. Teixeira, "Full time-domain DORT for ultra wideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.
doi:10.1109/TAP.2006.879196

29. Cassereau, D. and M. Fink, "Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 39, No. 5, 579-592, 1992.
doi:10.1109/58.156176

30. Carminati, R., R. Pierrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Opt. Lett., Vol. 32, No. 21, 3107-3109, 2007.
doi:10.1364/OL.32.003107

31. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, New Jersey, 1973.

32. De Rosny, J. and M. Fink, "Focusing properties of near-field time reversal," Physical Review A, Vol. 76, No. 6, 2007.
doi:10.1103/PhysRevA.76.065801

33. Moss, C. D., F. L. Teixeira, Y. E. Yang, and J. A. Kong, "Finite-difference time-domain simulation of scattering from objects in continuous random media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 178-186, 2002.
doi:10.1109/36.981359

34. Harris, F. J., "On the use of windows for harmonic analysis with the discrete fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837