Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-25
Complex Reluctance of Inhomogeneous Euler-Cauchy Tubular Ferrites Taking into Account Frequency-Dependent Complex Permeability
By
Progress In Electromagnetics Research M, Vol. 25, 71-85, 2012
Abstract
This paper presents a novel contribution to the analysis of skin-effect like phenomena in radially inhomogeneous tubular geometries that fit in the category of Euler-Cauchy structures (ECS). The advantage of ECSs is that solutions for the electromagnetic field can be described by very simple closed form formulae. This work addresses the evaluation of the per unit length complex magnetic reluctance of tubular ferrites, taking into account that their complex permeability strongly depends on the frequency. The motivation for this research is linked up with the nascent theory of magnetic transmission lines (MGTL), where the wave guiding structure is made of a pair of parallel ferrimagnetic pieces, and whose performance is critically dependent on the complex magnetic reluctance of its component pieces. The analysis presented is mainly focused on high frequency regimes up into the GHz range.
Citation
Jose Antonio Marinho Brandao Faria , "Complex Reluctance of Inhomogeneous Euler-Cauchy Tubular Ferrites Taking into Account Frequency-Dependent Complex Permeability," Progress In Electromagnetics Research M, Vol. 25, 71-85, 2012.
doi:10.2528/PIERM12052212
http://www.jpier.org/PIERM/pier.php?paper=12052212
References

1. Faria, J., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, 2008.
doi:10.1002/9780470697498

2. Magnusson, P., G. Alexander, V. Tripathi, and A. Weisshaar, Transmission Lines and Wave Propagation, 4th Edition, CRC Press, Boca Raton, 2001.

3. Kerns, Q. A., "Transient-suppressing magnetic transmission line,", Patent US 3376523, Apr. 2, 1968.

4. Faria, J., "Dispositivo formado por uma linha magnetica de transmissao para uso em circuitos integrados para aplicacoes na tecnologia Terahertz, (Magnetic transmission line device for terahertz integrated circuits),", Patent PT 106056, Dec. 12, 2011.

5. Faria, J. and M. P. Pires, "Theory of magnetic transmission lines," IEEE Trans. Microw. Theory Tech., Paper TMTT-2012-05-0407..

6. Horvath, M. P., "Microwave applications of soft ferrites," J. Magnetism Magn. Mat., Vol. 215-216, 171-183, 2000.
doi:10.1016/S0304-8853(00)00106-2

7. Faria, J., "Skin effect in inhomogeneous Euler-Cauchy tubular conductors," Progress In Electromagnetics Research M, Vol. 18, 89-101, 2011.

8. Wylie, C., Advanced Engineering Mathematics, McGraw-Hill, New York, 1975.

9. Faria, J., "A matrix approach for the evaluation of the internal impedance of multilayered cylindrical structures," Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011.

10., , http://www.fair-rite.com/newfair/materials76.htm..