Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-14
Propagation Characteristics of a Variant of Disc-Loaded Circular Waveguide
By
Progress In Electromagnetics Research M, Vol. 26, 23-37, 2012
Abstract
The shaping of dispersion characteristics in a variant of discloaded circular waveguide was studied through electromagnetic analysis for assessing the structure for wideband coalescence of the beam- and waveguide-mode dispersion characteristics that entails the wideband gyrotravelling-wave tube (gyro-TWT) performance. In this variant of disc-loaded circular waveguide, the alternate disc-hole radii were varying, however, the structure was periodic. The structure periodicity coupled with Floquet's theorem and field-matching technique resulted into the dispersion relation of the infinitely long structure. A numerical code was developed to solve the dispersion relation, and the dispersion characteristics of the structure were analyzed for the azimuthally symmetric TE-modes. The effects of structure parameters were studied for getting a straight-line portion of the dispersion characteristics over a wide frequency range. The dispersion shaping was projected for typically chosen TE01-mode. The results were validated against those obtained for the conventional and un-conventional known structures and those obtained using commercially available simulation tool. The variation of azimuthal electric field intensity over the radial coordinate was also studied to examine the control of structure parameter for maximaposition, where the gyrating electron beam would be positioned for optimum beam-wave interaction in a gyro-TWT.
Citation
Vishal Kesari Jaishanker Prasad Keshari , "Propagation Characteristics of a Variant of Disc-Loaded Circular Waveguide," Progress In Electromagnetics Research M, Vol. 26, 23-37, 2012.
doi:10.2528/PIERM12052810
http://www.jpier.org/PIERM/pier.php?paper=12052810
References

1. Lin, H.-N. and C.-C. Tang, "Analysis and design for high-gain antenna with periodic structures," PIERS Online, Vol. 6, No. 2, 181-184, 2010.
doi:10.2529/PIERS090905024125

2. Dehdasht-Heydari, R. , H. R. Hassani, and A. R. Mallahzadeh, "A new 2-18 GHz quad-ridged horn antenna," Progress In Electromagnetics Research, Vol. 81, 183-195, 2008.
doi:10.2528/PIER08010103

3. Dai, , G. L. and M. Y. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

4. Yang, M. H., J. Xu, Q. Zhao, L. Peng, G. P. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901

5. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

6. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

7. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

8. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters,, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302

9. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Rigorous analysis of electromagnetic scattering by cylindrical EBG structures," Progress In Electromagnetics Research, Vol. 121, 317-342, 2011.
doi:10.2528/PIER11090903

10. Escorcia-Garcia, J. and M. E. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
doi:10.2529/PIERS080906010703

11. Wei, S., Y. Lin, and T. Higo, "A new method for dispersion curves of HOM in periodical axisymmetric accelerating structures," Proc. 2nd Asian Particle Accelerator Conf., 153-155, Beijing, China, 2001.

12. Hu, Y. , C. Tang, H. Chen, Y. Lin, and D. Tong, "An X-band disk and washer accelerating structure for electron accelerators," Proc. Particle Accelerator Conf., 975-977, Chicago, 2001.

13. Amin, M. R. and K. Ogura, "Dispersion characteristics of a rectangularly corrugated cylindrical slow-wave structure driven by a non-relativistic annular electron beam," IET Microwave Antennas Propag., Vol. 1, No. 3, 575-579, 2007.
doi:10.1049/iet-map:20060279

14. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D Simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946

15. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604

16. Mulcahy, T., H. Song, and F. Francisco, "New method of integrating periodic permanent magnet (PPM) assembly in traveling wave tubes (TWTs)," Progress In Electromagnetics Research C, Vol. 10, 187-199, 2009.
doi:10.2528/PIERC09082907

17. Jain, P. K. and B. N. Basu, "Electromagnetic wave propagation through helical structures," Electromagnetic Fields in Unconven-tional Materials, O. N. Singh and A. Lakhtakia, Ed., John Wiley & Sons, USA, 2000.

18. Hou, Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.

19. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906

20. Jerby, E. and G. Bekefi, "Cyclotron maser experiments in a periodic wave guide," Phys. Rev. E, Vol. 48, No. 6, 4637-4641, 1993.
doi:10.1103/PhysRevE.48.4637

21. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 76, No. 2, 489-540, May 2004.
doi:10.1103/RevModPhys.76.489

22. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
doi:10.1109/22.709460

23. Zaginaylov, G. I. and I. V. Mitina, "Electromagnetic analysis of coaxial gyrotron cavity with the inner conductor having corrugations of an arbitrary shape," Progress In Electromagnetics Research B,, Vol. 31, 339-356, 2011.

24. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers, update 2011,", Scientific Report KITSR 7606,Karlsruhe Institute of Technology, Germany, Jan. 2012.

25. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402

26. Qiu, C. R., Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. on Plasma Sci., Vol. 33, No. 3, 1013-1018, Jun. 2005.
doi:10.1109/TPS.2005.848600

27. Kesari, V., P. K. Jain, and B. N. Basu, "Analytical approaches to a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs," EEE Trans. on Plasma Sci., Vol. 32, No. 5, 2144-2151, Oct. 2004.
doi:10.1109/TPS.2004.835518

28. Kesari, V., Analysis of Disc-loaded Circular Waveguides for Wideband Gyro-TWTs, LAP | Lambert Academic Publishing AG & Co., Germany, 2009, (ISBN: 978-3-8383-1145-6).

29. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs," IEEE Trans. on Plasma Sci., Vol. 33, No. 4, 1358-1365, Aug. 2005.
doi:10.1109/TPS.2005.852393

30. Kesari, V., P. K. Jain, and B. N. Basu, "Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier," Int. J. Infrared and Millimeter Waves, Vol. 26, No. 8, 1093-1110, Aug. 2005.
doi:10.1007/s10762-005-7270-9

31. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-1)," Progress In Electromagnetic Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305

32. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetic Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505

33. Yue, L., W. Wang, Y. Wei, and Y. Gong, "Approach to a coaxial arbitrary-shaped groove cylindrical waveguide for application in wideband gyro-TWTs," IEEE Trans. on Plasma Sci., Vol. 35, No. 3, 551-558, Jun. 2007.
doi:10.1109/TPS.2007.896982

34. Kesari, V. , P. K. Jain, and B. N. Basu, "Modeling of axially periodic circular waveguide with combined dielectric and metal loading," J. Physics D: Applied Physics, Vol. 38, 3523-3529, Sep. 2005.
doi:10.1088/0022-3727/38/18/030

35. Kesari, V. and J. P. Keshari, "Analysis of a circular Analysis of a circular," Progress In Electromagnetic Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207

36. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix loaded waveguides," Int. J. Electron., Vol. 53, No. 6, 729-741, Jun. 1982.
doi:10.1080/00207218208901564

37. Leou, K. C., T. Pi, D. B. Mcdermott, and N. C. Luhmann Jr., "Circuit design for a wideband disc loaded gyro-TWT amplifier," IEEE Trans. on Plasma Sci., Vol. 26, No. 3, 488-495, Jun. 1998.
doi:10.1109/27.700782

38. Denisov, G. G., V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, "Gyrotron traveling wave amplifier with a helical interaction waveguide," Phys. Rev. Lett., Vol. 81, No. 25, 5680-5683, Dec. 1998.
doi:10.1103/PhysRevLett.81.5680

39. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading Hybrid-mode helix-loading," Int. J. Electron., Vol. 82, No. 6, 663-675, Jun. 1997.
doi:10.1080/002072197135814

40. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dielectric-loading through dispersion shaping," IEEE Trans. on Electron Dev., Vol. 43, No. 12, 2290-2299, Dec. 1996.
doi:10.1109/16.544423