Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-07-20
Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron
By
Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012
Abstract
A time-dependent nonlinear theory for complex cavity gyrotron is presented in this paper. The theory includes generalized telegrapher's equations and electron motion equations, which are deduced in detail. A calculation code for the self-consistent nonlinear beam-wave interaction is developed based on the presented theory. Using the code, a 94 GHz complex cavity gyrotron operating in TE021-TE031 modes is thoroughly studied. Numerical results show that an output power of 180 kW, about 36% efficiency is achieved with a 50 kV, 10 A electron beam at a focused magnetic field of 1.78 T and a beam velocity ratio of 1.65. The results from MAGIC simulation are also given and an output power of 192 kW, 38.4% efficiency is obtained. This tells the agreement with these two simulation codes.
Citation
Jun Jian Ma Xiao Fang Zhu Xiao Lin Jin Yu Lu Hu Zhong-Hai Yang Jian-Qing Li Bin Li , "Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron," Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012.
doi:10.2528/PIERM12060104
http://www.jpier.org/PIERM/pier.php?paper=12060104
References

1. Flyagin, V. A., A. V. Gaponov, M. I. Petelin, and V. K. yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Techniques, Vol. 25, No. 6, 514-521, 1977.
doi:10.1109/TMTT.1977.1129149

2. Chu, K. R., "The electron cyclotron maser," Reviews of Modern Physics, Vol. 76, No. 2, 489-540, 2004.
doi:10.1103/RevModPhys.76.489

3. Pavelyev, V. G. and S. E. Tsimring, "Open resonator. Inventor's certificate 616664," Byull. Izobret., Vol. 17, 240, USSR, 1979.

4. Gaponov, A. V., V. A. Flyagin, A. L. Goldenberg, G. S. Nusi- novich, S. E. Tsimring, V. G. Usov, and S. N. Vlasov, "Power millimeter-wave gyrotrons," Int. J. Electronics, Vol. 51, No. 4, 277-302, 1981.
doi:10.1080/00207218108901338

5. Carmel, Y., K. R. Chu, M. Read, A. K. Ganguly, and D. Dialetis, "Realization of a stable and highly effcient gyrotron for controlled fusion research," Physical Review Letters, Vol. 50, No. 2, 112-116, 1983.
doi:10.1103/PhysRevLett.50.112

6. Pavelyev, V. G., S. E. Tsimring, and V. E. Zapevalov, "Coupled cavities with mode conversion in gyrotrons," Int. J. Electronics, Vol. 63, No. 3, 379-391, 1987.
doi:10.1080/00207218708939142

7. Dumbrajs, O. and B. Jodicke, "Mode competition in a complex cavityfor gyrotrons," International Conference on Infrared and Millimeter Waves, 198-199, 1987.

8. Niu, X.-J., L. Wang, and H.-F. Li, "Experimental investigation of 94 GHz second-harmonic gyrotrons," IEEE International Vacuum Electronics Conference (IVEC), 485-486, 2009.

9. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, IEEE, Piscataway, NJ, 2001.
doi:10.1109/9780470544877

10. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User configurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.
doi:10.1016/0010-4655(95)00010-D

11. Fliflet, A. W. and W. M. Manheimer, "Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal," Physical Review A, Vol. 39, No. 7, 3432-3443, 1989.
doi:10.1103/PhysRevA.39.3432

12. Fliflet, A. W., R. C. Lee, S. H. Gold, W. M. Manheimer, and E. Ott, "Time-dependent multimode simulation of gyrotron oscillators," Physical Review A, Vol. 43, No. 11, 6166-6176, 1991.
doi:10.1103/PhysRevA.43.6166

13. Nusinovich, G. S., "Linear theory of a gyrotron in weakly tapered external magnetic field," Int. J. Electronics, Vol. 64, No. 1, 127-135, 1988.
doi:10.1080/00207218808962789

14. Borie, E. and B. Jodicke, "Self-consistent theory of mode competition for gyrotrons," Int. J. Electronics, Vol. 72, No. 5-6, 721-744, 1992.
doi:10.1080/00207219208925611

15. Vlasov, A. N. and T. M. Antonsen, "Numerical solution of fields in lossy structures using MAGY," IEEE Trans. on Electron. Devices, Vol. 48, No. 1, 45-55, 2001.
doi:10.1109/16.892166

16. Fliflet, A. W., M. E. Read, K. R. Chu, and R. Seely, "A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron," Int. J. Electronics, Vol. 53, No. 6, 505-521, 1982.
doi:10.1080/00207218208901545

17. Levush, B., T. M. Antonsen, Jr., A. Bromborsky, W. Lou, and Y. Carmel, "Theory of relativistic backward wave oscillator with end reflections," IEEE Trans. Plasma Sci., Vol. 20, No. 3, 263-280, 1992.
doi:10.1109/27.142828

18. Guo, J. H., S. Yu, X. Li, and H. F. Li, "Study on nonlinear theory and code of beam-wave interaction for gyroklystron," J. Infrared Milli. Terahz. Waves, Vol. 32, 1382-1393, 2011.

19. Niu, X.-J., L. Wang, and H.-F. Li, "94 GHz second-harmonic gyrotron with complex cavity," IEEE International Vacuum Electronics Conference (IVEC), 469-470, 2009.
doi:10.1109/IVELEC.2009.5193589

20. Aune, P., M. Fourrier, and G. Mourier, "A method for determining oscillation area in microwave tubes," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 6, 725-742, 1994.