Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-25
Resolution of Multiple Concealed Threat Objects Using Electromagnetic Pulse Induction
By
Progress In Electromagnetics Research M, Vol. 26, 55-68, 2012
Abstract
The detection and identification of conducting objects using electromagnetic pulses to excite circulating eddy currents within the object is demonstrated by numerical simulation using a finite element time domain electromagnetic solver. The ability to discriminate between objects is based on the decay rate of the induced currents in the object, typically ~ 100 μS. The decay rates are different for a wide variety of everyday objects, allowing threat objects such as handguns, grenades and knives to be discriminated from benign objects such as mobile phones handsets, watches, keys, etc. Crucially, the time constant characterising an object depends only upon the electrical properties of the object (conductivity) and the shape and size of the object; the orientation of the object is irrelevant. This aspect independence of temporal current decay rate forms the basis of a potential object detection and identification system. By application of an algorithm based on the generalized pencil of function method, the authors demonstrate the ability to effectively count and indentify multiple objects carried in close proximity providing that the objects do not have very similar time constants and that signal to noise ratio is high.
Citation
Abdulbast Elgwel Stuart William Harmer Nicholas John Bowring Shaofei Yin , "Resolution of Multiple Concealed Threat Objects Using Electromagnetic Pulse Induction," Progress In Electromagnetics Research M, Vol. 26, 55-68, 2012.
doi:10.2528/PIERM12061113
http://www.jpier.org/PIERM/pier.php?paper=12061113
References

1. Nelson, C. V., C. B. Cooperman, W. Schneider, D. S. Wenstrand, and D. G. Smith, "Wide bandwidth time-domain electromagnetic sensor for metal target classification," IEEE Trans. on Geosci. Remote Sens., Vol. 39, No. 6, 1129-1138, Jun. 2001.
doi:10.1109/36.927425

2. Nelson, C. V., "Wide-area metal detection system for crowd screening," Proc. SPIE AeroSense 2003 Conf., Sensors and Command, Control, Communication, and Intelligence (C3T) Technologies for Homeland Defense and Law Enforcemnt II, Orlando, FL, Apr. 22-25, 2003.

3. Nelson, C. V., "Metal detection and classification technologies," Johns Hopkins APL technical Digest, Vol. 24, No. 1, 62-66, 2004.

4. Paulter, N. G., "Guide to the technologies of concealed weapon and contraband imaging and detection NIJ Guide 60200,", Electricity Division, National Institute of Standards and Technology Gaithersburg, MD 20899, Prepared for: National Institute of Justice O±ce of Science and Technology Washington, DC 20531, Feb. 2001.

5. Agurto, A., Y. Li, G. Y. Tian, N. Bowring, and S. Lockwood, "A review of concealed weapon detection and research in perspective," Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, London, UK, Apr. 15-17, 2007.

6. Agurto, G. A., "New proposal for the detection of concealed weapons: Electromagnetic weapon detection for open areas,", Ph.D. Thesis, Hudders¯eld, UK, 2009.

7. Hunt, A. R., R. D. Hogg, and W. Foreman, "Concealed weapons detection using electromagnetic resonances," Proc. of the SPIE The International Society for Optical Engineering Conference of Enforcement and Security Technologies, Vol. 3575, 62-67, Boston, MA, Nov. 1998.

8. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., 1170, Wiley --- IEEE Press, 2007.
doi:10.1002/047012458X

9. Kriezis, E. E., T. D. Tsiboukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and applications ," Proc. of the IEEE, Vol. 80, No. 10, 1559-1589, Oct. 1992.
doi:10.1109/5.168666

10. Theodoulidis, T. P., N. V. Kantartzis, T. D. Tsiboukis, and E. E. Kriezis, "Analytical and numerical solution of the eddy-current problem in spherical coordinates based on the second-order vector potential formulation," IEEE Trans. on Mag., Vol. 33, No. 4, 2461, Jul. 1997.
doi:10.1109/20.595899

11. Davey, K. R., "Working nonlinear transient eddy current problems with time harmonic solutions," IEEE Trans. on Mag., Vol. 40, No. 2, Mar. 2004.
doi:10.1109/TMAG.2004.824709

12. Baum, C. E., N. Geng, and L. Carin, "Integral equations and polarizability for magnetic singularity identification,", Interaction Note 524, Phillips Lab, Mar. 1997.

13. Kaufman, A. A. and G. V. Kellier, Inductive Mining Prospecting Part 1: Theory, 620, Elsevier, Amsterdam, 1985.

14. Sower, G. D., "Eddy current resonances of canonical metallic targets --- Theory and measurements,", EG & G MSI, Interaction Note, Feb. 1997.

15. Detection and Identification of Visually Obscured Targets, Editor, C. E. Baum, 434, Taylor and Francis, 1999.

16. Wait, J. R. and K. P. Spies, "Quasi-static transient response of a conducting permeable sphere," Geophysics, Vol. 34, No. 5, 789-792, 1969.

17. Kaufman, A. A. and P. A. Eaton, The Theory of Inductive Prospecting, Amsterdam, Netherland , 2001.

18. Sower, G. D. , S. P. Cave, and , "Detection and identification of mines from natural magnetic and electromagnetic resonances," Proc. SPIE, Vol. 2496, 1015-1024, Orlando, FL, 1995.

19. Geng, N. and C. E. Baum, "On the low-frequency natural response of conducting and permeable targets," IEEE Trans. on Geosci. Remote Sens., Vol. 37, No. 1, Jan. 1999.

20. Baum, C. E., "Low-frequency near-field magnetic scattering from highly, but not perfectly, conducting bodies,", Interaction Note 499, Phillips Laboratory, Nov. 1993.

21. Baum, C. E., "On the singularity expansion method for the solution of electromagnetic interaction problems,", Interaction Notes, Note 88, Air Force Weapons Laboratory, 1971.

22. Baum, C. E., et al., "The singularity expansion method and its application to target identification," Proc. of the IEEE, Vol. 79, No. 10, 1481-1492, 1991.
doi:10.1109/5.104223

23. Wang, Y. and N. Shuley, "Complex resonant frequencies for the identifcation of simple objects in free space and lossy environments," Progress In Electromagnetics Research, Vol. 27, 1-18, 2000.
doi:10.2528/PIER99040501

24. Harmer, S. W., S. E. Cole, N. J. Bowring, N. D. Rezgui, and D. Andrews, "On body concealed weapon detection using a phased antenna array," Progress In Electromagnetics Research, Vol. 124, 187-210, 2012.
doi:10.2528/PIER11112105

25. Harmer, S. W., D. A. Andrews, N. D. Rezgui, and N. J. Bowring, "Detection of handguns by their complex natural resonant frequencies ," IET Microw. Antennas Propag., Vol. 4, No. 9, 1182-1190, Sep. 2010.
doi:10.1049/iet-map.2009.0382

26. Harmer, S., D. Andrews, N. Bowring, N. Rezgui, and M. Southgate, "Ultra wide band detection of on body concealed weapons using the out of plane polarized late time response," Proc. SPIE, Vol. 7485, 748505, 2009.
doi:10.1117/12.830520

27. Zhang, L. , Y. Hao, and C. G. Parini, "Natural resonant frequency extraction for concealed weapon detection at millimetre wave frequencies," 2nd European Conference on Antennas and Propagation (EuCAP), 2007/11961, Edinburgh, UK, Nov. 11-16, 2007.

28. Alabaster, C. M., "The microwave properties of tissue and other lossy dielectrics,", Ph.D. Thesis, Cranfield, UK, Mar. 2004.

29. Secman, M. and G. Turhan-Sayan, "Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm," IET Radar, Sonar and Navigation, Vol. 3, No. 6, 583-595, 2009.
doi:10.1049/iet-rsn.2008.0112

30. Harfield, N. and J. R. Bowler, "Theory of thin-skin eddy-current interaction with surface cracks," J. Appl. Phys., Vol. 82, 4590, 1997.
doi:10.1063/1.366196

31. Cao, B.-H., M.-B. Fan, and X.-F. Yang, "Analytical time-domain model of transient eddy current field in pulsed eddy current testing," Acta Phys. Sin., Vol. 59, No. 11, 7570-7574, 2010.

32. Tian, G. Y., A. Sophian, D. Taylor, and J. Rudlin, "Multiple sensors on pulsed eddy-current detection for 3-D subsurface crack assessment," IEEE Sensors Journal, Vol. 5, No. 1, 90-96, 2005.
doi:10.1109/JSEN.2004.839129

33. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. on Antennas and Propag., Vol. 37, No. 2, 229-234, 1989.
doi:10.1109/8.18710

34. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters in noise," IEEE Trans. on Acoust. Speech, Signal Processing, Vol. 38, 814-824, May 1990.
doi:10.1109/29.56027