Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-07-12
Solving Wave Propagation Within Finite-Sized Composite Media with Linear Embedding via Green's Operators
By
Progress In Electromagnetics Research M, Vol. 25, 127-140, 2012
Abstract
The calculation of electromagnetic (EM) fields and waves inside finite-sized structures comprised of different media can benefit from a diakoptics method such as linear embedding via Green's operators (LEGO). Unlike scattering problems, the excitation of EM waves within the bulk dielectric requires introducing sources inside the structure itself. To handle such occurrence, we have expanded the set of LEGO sub-domains - employed to formulate an EM problem - to deal with the inclusion of elementary sources. The corresponding subdomains (bricks) play the role of ``generators'' in the equivalent model. Moreover, if a source is ``turned off'', as it were, the enclosing brick can be utilized as a numerical ``probe'' to sample the EM field. In this paper, we present the integral equations of LEGO modified so as to accommodate generator/probe bricks. Numerical results are provided which demonstrate the validity and the efficiency of the approach.
Citation
Vito Lancellotti Antonius G. Tijhuis , "Solving Wave Propagation Within Finite-Sized Composite Media with Linear Embedding via Green's Operators," Progress In Electromagnetics Research M, Vol. 25, 127-140, 2012.
doi:10.2528/PIERM12061404
http://www.jpier.org/PIERM/pier.php?paper=12061404
References

1. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.

2. Yuan, H.-W., S.-X. Gong, Y. Guan, and D.-Y. Su, "Scattering analysis of the large array antennas using the synthetic basis functions method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 309-320, 2009.
doi:10.1163/156939309787604364

3. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

4. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

5. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425

6. Ylä-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365

7. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.

8. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green's operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, Apr. 2010.
doi:10.2528/PIER10032915

9. Lancellotti, V. and A. G. Tijhuis, "Convergence properties of a diakoptics method for electromagnetic scattering from 3-D complex structures," Progress In Electromagnetics Research M, Vol. 24, 127-140, May 2012.

10. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators," Waves in Random and Complex Media, Vol. 21, 434-455, Aug. 2011.
doi:10.1080/17455030.2011.577844

11. Rothwell, E. J. and M. J. Cloud, Electromagnetics, CRC Press, London, 2001.
doi:10.1201/9781420058260

12. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818