Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-01
On Relativistic Polarization of a Rotating Magnetized Medium
By
Progress In Electromagnetics Research M, Vol. 25, 157-172, 2012
Abstract
We consider the relativistic polarization of a rotating magnetized medium in the framework of the approach suggested earlier (A L Kholmetskii and T Yarman 2010 Eur. J. Phys. 31 1233), which is based on the charge conservation law and relativistic generalization of the first Kirchhoff law to a closed moving circuit carrying steady current. We show that the polarization of a magnet brought to a rotation differs, in general, from the relativistic polarization of a translationary moving magnet, and on this way we give one more explanation to the familiar Wilson & Wilson experiment, with the explicit demonstration of the implementation of the charge conservation law.
Citation
Alexander L. Kholmetskii Oleg V. Missevitch Tolga Yarman , "On Relativistic Polarization of a Rotating Magnetized Medium," Progress In Electromagnetics Research M, Vol. 25, 157-172, 2012.
doi:10.2528/PIERM12062003
http://www.jpier.org/PIERM/pier.php?paper=12062003
References

1. Wilson, M. and H. A. Wilson, "On the electric effect of a rotating insulator in a magnetic field," Proc. R. Soc. London, Vol. A89, 99, 1913.

2. Pellegrini, G. N. and A. R. Swift, "Maxwell's equations in a rotating medium: Is there a problem?," Am. J. Phys., Vol. 63, 694, 1995.
doi:10.1119/1.17839

3. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2nd Ed., Wiley, New York, 1962.

4. Burrows, L. B., G. N. Pellegrini, and A. R. Swift, "Comment on `Maxwell's equations in a rotating medium: Is there a problem?'," Am. J. Phys., Vol. 65, 929, 1997.
doi:10.1119/1.18689

5. Weber, T. A., "Measurement on a rotating frame in relativity, and the Wilson and Wilson experiment," Am. J. Phys., Vol. 65, 946, 1997.
doi:10.1119/1.18696

6. Ridgely, C. T., "Applying relativistic electrodynamics to a rotating material medium," Am. J. Phys., Vol. 66, 114, 1998.
doi:10.1119/1.18828

7. Hertzberg, J. B., et al., "Measurement of the relativistic potential difference across a rotating magnetic dielectric cylinder," Am. J. Phys., Vol. 69, 648, 1997.
doi:10.1119/1.1362695

8. Kholmetskii, A. L. and T. Yarman, "Various paths to fundamental physical laws: relativistic polarization of a moving magnetic dipole," Eur. J. Phys., Vol. 31, 1233, 2010.
doi:10.1088/0143-0807/31/5/022

9. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Addison-Wesley, Reading, Mass., 1964.

10. Blackford, B. L., "Electric field of a slowly moving rectangular current loop: A microscopic approach," Am. J. Phys., Vol. 62, 1005, 1994.
doi:10.1119/1.17697

11. Rosser, W. G. V., An Introduction to the Theory of Relativity, Butterworths, London, 1964.

12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, 1998.

13. Pellegrini, G. N., Private Correspondence, 2005.