Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-07
Quadratic Frequency Modulated Thermal Wave Imaging for Non-Destructive Testing
By
Progress In Electromagnetics Research M, Vol. 26, 11-22, 2012
Abstract
Thermal non-destructive testing and evaluation of glass fibre reinforced plastic materials has gained more importance in aerospace industry due to low weight and high strength capabilities in severe environmental conditions. More recently, pulse compression favorable non-stationary excitation schemes have been exhibiting reliable defect detection capabilities in infrared non-destructive testing. This paper introduces a novel infrared non-destructive testing method based on quadratic frequency modulated thermal wave imaging with pulse compression for charactierization of glass fibre reinforced plastic materials. Defect detection capability of the proposed method has been experimentally validated using a glass fiber reinforced plastic (GFRP) sample with embedded Teflon inserts. Experimental results proved the enhanced depth resolution capability of the proposed excitation method as compared to the linear frequency modulation with pulse compression.
Citation
Ghali Venkata Subbarao Ravibabu Mulaveesala , "Quadratic Frequency Modulated Thermal Wave Imaging for Non-Destructive Testing," Progress In Electromagnetics Research M, Vol. 26, 11-22, 2012.
doi:10.2528/PIERM12062101
http://www.jpier.org/PIERM/pier.php?paper=12062101
References

1. Avdelidis, N. P., C. Ibarra-Castanedo, X. Maldague, Z. P. Marioli-Riga, and D. P. Almond, "A thermographic comparison study or the assessment of composite patches," Infrared Physics & Technology, Vol. 45, No. 4, 291-299, 2004.
doi:10.1016/j.infrared.2004.01.001

2. Busse, G., D. Wu, and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J. Appl. Phys., Vol. 71, No. 8, 3962-3965, 1992.
doi:10.1063/1.351366

3. Maldague, X., Y. Largouet, and J. P. Couturier, "Depth study in Pulsed phase thermography using neural networks: Modelling, noise, experiments," Revue Generale de Thermique, Vol. 37, 704-708, 1998.
doi:10.1016/S0035-3159(98)80048-2

4. Mulaveesala, R. and S. Tuli, "Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection," Appl. Phys. Lett., Vol. 89, 191913, 2006.
doi:10.1063/1.2382738

5. Mulaveesala, R., V. J. Somayajulu, and P. Singh, "Pulse compression approach to infrared non destructive characterization," Rev. Sci. Instru., Vol. 79, No. 9, 094901, 2008.
doi:10.1063/1.2976673

6. Tabatabaei, N., A. Mandelis, and B. T. Amaechi, "Thermo photonic radar imaging: an emissivity-normalized modality with advantages over phase lock-in thermography," Appl. Phys. Lett., Vol. 98, No. 16, 163706, 2011.
doi:10.1063/1.3582243

7. Ghali, V. S. and N. Jonnalagadda R. Mulaveesala, "Three dimentional pulse compression for infraed non destructive testing," IEEE Sensors, Vol. 9, No. 7, 832-833, 2009.
doi:10.1109/JSEN.2009.2024042

8. Mulaveesala, R. and V. S. Ghali, "Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics," Rev. Sci. Instru., Vol. 82, No. 5, 054902, 2011.
doi:10.1063/1.3594551

9. Cook, C. E. and J. Paolillo, "A pulse compression predistortion function for efficient sidelobe reduction in a high-power radar," Proc. IEEE, Vol. 52, No. 4, 377-389, 1964.
doi:10.1109/PROC.1964.2927

10. Ramp, H. O. and E. R. Wingrove, "Principles of pulse compression," IRE Transactions on Military Electronics, Vol. 5, No. 2, 109-116, 1961.
doi:10.1109/IRET-MIL.1961.5008328

11. Liu, J. Y., W. Yang, and J. M. Dai, "Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT," Infrared Physics & Technology, Vol. 53, No. 5, 348-357, 2010.
doi:10.1016/j.infrared.2010.06.002

12. Carslaw, H. S. and J. C. Jaeger, "Conduction of Heat in Solids," Oxford Clarendon Press, London, 1959.

13. Tabatabaei, N. and A. Mandelis, "Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range," Rev. Sci. Instru., Vol. 80, No. 3, 034902, 2009.
doi:10.1063/1.3095560