Vol. 25
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-14
Electromagnetic Scattering from a Multilayered Surface with Lossy Inhomogeneous Dielectric Profiles for Remote Sensing of Snow
By
Progress In Electromagnetics Research M, Vol. 25, 197-209, 2012
Abstract
A multilayered backscattering model for a lossy medium has been presented in this paper. This multilayered model has been used to calculate the total surface reflection coefficients of a snow pack for both horizontal and vertical co-polarizations. The total surface reflection coefficients include contributions from both surface and volumetric backscattering. The backscattering coefficients calculated by this model were compared with in situ measurements on dry and wet snow. Results show that good agreements are obtained between the model and measurements for the co-polarization modes, especially for the snow with less liquid water content.
Citation
Kaijun Song, Xiaobing Zhou, and Yong Fan, "Electromagnetic Scattering from a Multilayered Surface with Lossy Inhomogeneous Dielectric Profiles for Remote Sensing of Snow," Progress In Electromagnetics Research M, Vol. 25, 197-209, 2012.
doi:10.2528/PIERM12063004
References

1. Yan, S. H., X. B. Wu, and Z. Z. Chen, "Remote sensing with TDMF radar: Some preliminary results," Progress In Electromagnetics Research Letters, Vol. 14, 79-90, 2010.
doi:10.2528/PIERL10022405

2. Storvold, R., E. Malnes, Y. Larsen, K. A. H¿gda, S. E. Hamran, K. MÄuller, and K. A. Langley, "SAR remote sensing of snow parameters in Norwegian areas-current status and future perspective," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1751-1759, 2006.
doi:10.1163/156939306779292192

3. Chen, K. S., T. D. Wu, and J. C. Shi, "A model-based inversion of rough soil surface parameters from radar measurements," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 2, 173-200, 2001.
doi:10.1163/156939301X01336

4. Wang, H., A. N. Arslan, J. Pulliainen, and M. Hallikainen, "Microwave emission model for wet snow by using radiative transfer and strong fluctuation theory--- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 57-59, 2001.
doi:10.1163/156939301X00634

5. Arslan, A. N., H. Wang, J. Pulliainen, and M. Hallikainen, "Effective permittivity of wet snow using strong fluctuation theory --- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 57-59, 2001.
doi:10.1163/156939301X00625

6. Boyarskii, D. A. and V. V. Tikhonov, "The influence of stratigraphy on microwave radiation from natural snow cover," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1265-1285, 2000.
doi:10.1163/156939300X01201

7. Hosseinmostafa, A. R., V. I. Lytle, K. C. Jezek, S. P. Gogineni, S. F. Ackley, and R. K. Moore, "Comparison of radar backscatter from Antarctic and Arctic sea ice," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 3, 421-438, 1995.

8. Boyarskii, D. A., V. V. Tikhonov, N. I. Kleeorin, and V. G. Mirovskii, "Inclusion of scattering losses in the models of the eFFective permittivity of dielectric mixtures and applications to wet snow," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 11, 1395-1410, 1994.

9. Kanagaratnam, P., T. Markus, V. Lytle, B. Heavey, P. Jansen, G. Prescott, and S. P. Gogineni, "Ultrawideband radar measurements of thickness of snow over sea ice," IEEE Trans. on Geosci. Remote Sens., Vol. 45, No. 9, 2715-2724, 2007.
doi:10.1109/TGRS.2007.900673

10. Luojus, K. P., J. T. Pulliainen, S. J. Metsamaki, and M. T. Hallikainen, "Snow-covered area estimation using satellite radar wide-swath images," IEEE Trans. on Geosci. Remote Sens., Vol. 45, No. 4, 978-989, 2007.
doi:10.1109/TGRS.2006.888864

11. Yackel, J. J. and D. G. Barber, "Observations of snow water equivalent change on landfast first-year sea ice in winter using synthetic aperture radar data," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 4, 1005-1015, 2007.
doi:10.1109/TGRS.2006.890418

12. Roy, V., K. Goita, A. Royer, A. E. Walker, and B. E. Goodison, "Snow water equivalent retrieval in a canadian boreal environment from microwave measurements using the HUT snow emission model," IEEE Trans. on Geosci. Remote Sens., Vol. 42, No. 9, 1850-1859, 2004.
doi:10.1109/TGRS.2004.832245

13. Arslan, A. N., H. Wang, J. Pullianinen, and M. Hallikainen, "Scattering from wet snow by applying strong fluctuation theory," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 7, 1009-1024, 2003.
doi:10.1163/156939303322519081

14. Baghdadi, N., Y. Gauthier, and M. Bernier, "Capability of multitemporal ERS-1 SAR data for wet-snow mapping," Remote Sens. Environ., Vol. 60, No. 2, 174-186, 1997.
doi:10.1016/S0034-4257(96)00180-0

15. Nagler, T. and H. Rott, "Retrieval of wet snow by means of multitemporal SAR data," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 2, 754-765, 2000.
doi:10.1109/36.842004

16. Baghdadi, N., Y. Gauthier, M. Bernier, and J.-P. Fortin, "Potential and limitations of RADARSTAT SAR data for wet snow monitoring," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 1, 316-320, 2000.
doi:10.1109/36.823925

17. Kendra, J. R., K. Sarabandi, and F. T. Ulaby, "Radar measurements of snow: Experiment and analysis," IEEE Trans. on Geosci. Remote Sens., Vol. 36, No. 3, 864-879, 1998.
doi:10.1109/36.673679

18. Shi, J. and J. Dozier, "Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar," IEEE Trans. on Geosci. Remote Sens., Vol. 33, No. 4, 905-914, 1995.
doi:10.1109/36.406676

19. Ulaby, F. T., P. Siqueira, A. Nashashibi, and K. Sarabandi, "Semi-empirical model for radar backscatter from snow at 35 and 95 GHz," IEEE Trans. on Geosci. Remote Sens., Vol. 34, No. 5, 91059-91065, 1996.

20. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.

21. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave Remote Sensing, Active and Passive," Addison-Wesley, Norwood, 1981.

22. Guo, J., L. Tsang, E. G. Josberger, A. W. Wood, J.-N. Hwang, and D. P. Lettenmaier, "Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements," IEEE Trans. on Geosci. Remote Sens., Vol. 41, No. 3, 612-621, 2003.
doi:10.1109/TGRS.2003.808907

23. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 2, 356-369, 1992.
doi:10.1109/36.134085

24. Song, K., X. Zhou, and Y. Fan, "Empirically adopted IEM for retrieval of soil moisture from radar backscattering coeFFIcients," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 6, 1662-1672, 2009.
doi:10.1109/TGRS.2008.2009061

25. Song, K., X. Zhou, and Y. Fan, "Retrieval of soil moisture content from microwave backscattering using a modiFIed IEM model," Progress In Electromagnetics Research B, Vol. 26, 383-399, 2010.
doi:10.2528/PIERB10072905

26. Song, K., X. Zhou, and Y. Fan, "Multilayer soil model for improvement of soil moisture estimation using the small perturbation method," Journal of Applied Remote Sensing, Vol. 3, No. 1, 033567, 2009.
doi:10.1117/1.3277666