Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-22
Giant Optical Activity and Negative Refractive Index Using Complementary U-Shaped Structure Assembly
By
Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012
Abstract
In this paper, a chiral metamaterial (CMM) with complementary U-shaped structure assembly is proposed. The microwave experimental and simulated results of the proposed complementary structure exhibit giant optical activity. The experimental results are in good agreement with the numerical ones. The retrieval results reveal that negative refractive indices for right-handed and left-handed circularly polarized waves could be easily realized due to strong chirality. The mechanism of the chiral behaviors of resonance frequencies will be illustrated by simulated current distributions. Further, the complementary U-shaped structure assembly also exhibits stronger circular dichroism, giant optical activity, and negative index at near-infrared region by simulations.
Citation
Yongzhi Cheng Yan Nie Rong Zhou Gong , "Giant Optical Activity and Negative Refractive Index Using Complementary U-Shaped Structure Assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403
http://www.jpier.org/PIERM/pier.php?paper=12070403
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Shelby , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Schurig, , D., , J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. on Antenn. and Propag., Vol. 54, No. 7, 2113-2130, 2006.
doi:10.1109/TAP.2006.877179

7. Mirza, I. O., S. Shi, and D. W. Prather, "Phase modulation using dual split ring resonators," Opt. Express, Vol. 17, No. 7, 5089-5097, 2009.
doi:10.1364/OE.17.005089

8. Zhang, S., W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, No. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

9. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, No. 24, 3356-3358, 2005.
doi:10.1364/OL.30.003356

10. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, No. 9, 6736-6744, 2008.
doi:10.1364/OE.16.006736

11. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

12. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
doi:10.1126/science.1104467

13. Rogacheva, A. V. , V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "\Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 2006.
doi:10.1103/PhysRevLett.97.177401

14. Liu, H., D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B, Vol. 76, No. 7, 073101(4), 2007.
doi:10.1103/PhysRevB.76.073101

15. Li, , T. Q., H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, "Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial," Appl. Phys. Lett., Vol. 92, No. 13, 131111(3), 2008.

16. Decker, , M., S. Linden, M. Wegener, "Coupling effects in low-symmetry planar split-ring resonator arrays," Opt. Lett., Vol. 34, No. 10, 1579-1581, 2009.
doi:10.1364/OL.34.001579

17. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, No. 3, 033108, 2009.
doi:10.1103/PhysRevB.80.033108

18. Singh, R. J., E. Plum, W. L. Zhang, and N. I. Zheludev, "Highly tunable optical activity in planar achiral terahertz metamaterials," Opt. Express, Vol. 18, No. 13, 13425-13430, 2010.
doi:10.1364/OE.18.013425

19. Wang, B. , T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003(1), 2009.

20. Zhang, S., Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, No. 2, 023901(4), 2009.
doi:10.1103/PhysRevLett.102.023901

21. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6), 2009.
doi:10.1103/PhysRevB.79.035407

22. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104(4), 2009.
doi:10.1103/PhysRevB.79.121104

23. Dong, J., J. Zhou, T. Koschny, and C. Soukoulis, "Bi-layer crosschiral structure with strong optical activity and negative refractiveindex," Opt. Express, Vol. 17, No. 16, 14172-14179, 2009.
doi:10.1364/OE.17.014172

24. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ‘’U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(3), 2010.

25. Decker, M., R. Z., C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593, 2010.
doi:10.1364/OL.35.001593

26. Zhao, R. , L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, No. 3, 035105(4), 2011.

27. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909

28. Li, J., F. Q. Yang, and J. F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

29. Wu, Z., J. Zhu, H. Lu, and B Zeng, "A double-layer metamaterial with negative refractive index originating from chiral configuration," Microw. Opt. Technol. Lett., Vol. 53, No. 1, 163-166, 2011.
doi:10.1002/mop.25645

30. Zarifi, D., M. Soleimani, and V. Nayyeri, "A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2--3, 251-263, 2012.
doi:10.1163/156939312800030767

31. Li, Z., K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Composite chiral metamaterials with negative refractive index and high values of the figure of merit," Opt. Express, Vol. 20, No. 16, 6146-6156, 2012.
doi:10.1364/OE.20.006146

32. Zhao, R., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Comparison of chiral metamaterial designs for repulsive Casimir force," Phys. Rev. B, Vol. 81, No. 32, 235126, 2010.
doi:10.1103/PhysRevB.81.235126

33. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

34. Falcone, F. , T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. R. Marques, F. F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 3, No. 19, 197401(4), 2004.

35. Zentgraf , T., T. P. Meyrath, A. Seidel, S. Kaiser, and H. Giessen, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B, Vol. 76, No. 3, 033407(4), 2007.
doi:10.1103/PhysRevB.76.033407

36. Liu, N., S. Kaiser, and H. Giessen, "Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules," Adv. Mater., Vol. 20, No. 23, 4521-4525, Deerfield Beach, Florida, 2008.
doi:10.1002/adma.200801917

37. Xiong, X. , W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Phys. Rev. B, Vol. 81, No. 7, 075119, 2010.
doi:10.1103/PhysRevB.81.075119

38. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metama-terials: Retrieval of the effective parameters with and without substrate," Opt. Express, Vol. 8, No. 14, 14553-14567, 2010.
doi:10.1364/OE.18.014553

39. Kwon, D., D. H. Werner, A. V. Kildishev, V. M. Shalaev, and , "Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design," Opt. Express, Vol. 16, No. 16, 11822-11829, 2008.
doi:10.1364/OE.16.011822

40. Depine, R. A. and A. A. Lakhtakia, "New condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microw. Opt. Technol. Lett., Vol. 41, No. 4, 315-316, 2004.
doi:10.1002/mop.20127