Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-22
Electromagnetic Susceptibility Model of Discontinuous Microstrip Circuits Under Plane Wave Illumination
By
Progress In Electromagnetics Research M, Vol. 25, 223-237, 2012
Abstract
The electromagnetic susceptibility model of discontinuous microstrip circuits with the presence of a uniform plane incident wave is established. First, the analytical expressions are modeled as equivalent voltage and current sources for discussing the global effect of the incident plane wave on the associated interconnects. Then, these field-induced equivalent source expressions are incorporated into ADS circuit solver, and a fast model is established for analyzing the output responses of discontinuous microstrip circuits, such as the cross bend, the band-rejection filter and the single-stage amplifier. The corresponding simulation results from the proposed model are validated by comparing the results from both simulation and measurement. The results also show that the incident plane wave may influence the output terminal responses significantly, and the proposed approach would be an efficient method to solve the electromagnetic susceptibility problems associated with the discontinuous microstrip circuits.
Citation
Shourong Li Ying Li Zhen Sun Fan Wang , "Electromagnetic Susceptibility Model of Discontinuous Microstrip Circuits Under Plane Wave Illumination," Progress In Electromagnetics Research M, Vol. 25, 223-237, 2012.
doi:10.2528/PIERM12070604
http://www.jpier.org/PIERM/pier.php?paper=12070604
References

1. Ramdani, M., E. Sicard, A. Boyer, S. Ben Dhia, J. J. Whalen, T. H. Hubing, M. Coenen, and O. Wada, "The electromagnetic compatibility of integrated circuits --- Past, present, and future," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 78-100, 2009.
doi:10.1109/TEMC.2008.2008907

2. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501

3. Soproni, V. D. , S. M. Vicas, T. Leuca, M. N. Arion, F. I. Hathazi, and C. O. Molnar, "High frequency electromagnetic field modeling and experimental validation of the microwave drying of wheat seeds," Progress In Electromagnetics Research B, Vol. 41, 419-439, 2012.

4. Lagos, J. L. and F. Fiori, "Worst-case induced disturbances in digital and analog interchip interconnects by an external electromagnetic plane wave --- Part I: Modeling and algorithm," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 1, 178-184, 2011.
doi:10.1109/TEMC.2010.2085005

5. Tsai, H. C., "Investigation into time-and-frequency-domain EMI-induced noise in bistable multi-vibrator," Progress In Electromagnetics Research, Vol. 100, 327-349, 2010.
doi:10.2528/PIER09112904

6. Han, S. M., J.-J. Bang, C.-S. Huh, and J.-S. Choi, "A PCB noise analysis regarding EMP penetration using an electromagnetic topology method," Progress In Electromagnetics Research, Vol. 122, 15-27, 2012.
doi:10.2528/PIER11062001

7. Xie, H., J. Wang, R. Fan, and Y. Liu, "Spice models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
doi:10.2528/PIER10020506

8. Rachidi, F., "Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field," IEEE Trans. on Electromagn. Compat., Vol. 35, No. 3, 404-407, 1993.
doi:10.1109/15.277316

9. Bernardi, P. and R. Cicchetti, "Response of a planar microstrip line excited by an external electromagnetic field," IEEE Trans. on Electromagn. Compat., Vol. 32, No. 2, 98-105, 1990.
doi:10.1109/15.52405

10. Tesche, F. M., M. V. Ianoz, and T. Karlsson, "EMC Analysis Methods and Computational Models," Wiley, 1997.

11. Khazaka, R. and M. Nakhla, "Analysis of high-speed interconnects in the presence of electromagnetic interference," IEEE Trans. on Micro. Theory and Tech., Vol. 46, No. 7, 940-947, 1998.
doi:10.1109/22.701446

12. Liu, E. X., E. P. Li, L. W. Li, and Z. Shen, "Finite-difference time-domain macromodel for simulation of electromagnetic interference at high-speed interconnects," IEEE Trans. on Magn., Vol. 41, No. 1, 65-71, 2005.
doi:10.1109/TMAG.2004.839733

13. Taylor, C. D., R. S. Satterwhite, and C. W. Harrison, "The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field," IEEE Trans. on Antennas and Propag., Vol. 13, No. 6, 987-989, 1965.
doi:10.1109/TAP.1965.1138574

14. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

15. Silva, A. O., R. Bertholdo, M. G. Schiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Comparative analysis between experimental characterization results and numerical FDTD modelling of self-assembled photonic crystals," Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010.
doi:10.2528/PIERB10060404

16. Lan, J., Y. Yang, and J. Y. Dai, "Applications of a three-dimensional FDTD method with weakly conditional stability to the analysis of microstrip filters with fine scale structures," Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011.
doi:10.2528/PIERL11082213

17. Dzulkipli, I. , M. H. Jamaluddin, R. Ngah, M. R. B. Kamarudin, N. Seman, and M. K. A. Rahim, "Mutual coupling analysis using FDTD for dielectric resonator antenna reflectarray radiation prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.

18. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
doi:10.2528/PIER10060708

19. Xie, H. Y., J. G. Wang, and R. Y. Fan, "A hybrid FDTD-SPICE method for transmission lines excited by a nonuniform incident Wave," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 3, 811-817, 2009.
doi:10.1109/TEMC.2009.2020913

20. Cheldavi, A. and P. Nayeri, "Analysis of V transmission lines response to external electromagnetic fields," Progress In Electromagnetics Research, Vol. 68, 297-315, 2007.
doi:10.2528/PIER06093003

21. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Line and Slotlines, 2nd Ed., Artech House, Boston, 1996.

22. Leone, M. and H. L. Singer, "On the coupling of an external electromagnetic field to a printed circuit board trace," IEEE Trans. on Electromagn. Compat., Vol. 41, No. 4, 418-424, 1999.
doi:10.1109/15.809842

23. Hsieh, H. C., C. N. Chiu, M. S. Lin, C. H. Wang, and C. H. Chen, "An equation-based hybrid method for predicting radiated susceptibility responses of RF/Microwave circuits," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 2, 339-348, 2011.
doi:10.1109/TEMC.2010.2095858

24. Li, E. P., E. X. Liu, L. W. Li, and M. S. Leong, "A coupled efficient and systematic full-wave time-domain macromodeling and circuit simulation," IEEE Transactions on Advanced Packaging, Vol. 27, No. 1, 1-11, 2004.
doi:10.1109/TADVP.2004.828073

25. Jin, H. F., E. P. Li, and E. X. Liu, "A novel integrated approach for simulation of electromagnetic susceptibility problem," 2005 International Symposium on Electromagnetic Compatibility, Vol. 2, 446-450, 2005.

26. Hsieh, H.-C., J. S. Chen, C.-H. Wang, C.-N. Chiu, M.-S. Lin, and C. H. Chen, "A fast analysis of electromagnetic immunity responses of RF amplifier circuit under CW/digital-modulation schemes," 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 724-728, 2011.
doi:10.1109/ISEMC.2011.6038404