Vol. 25
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-13
Super-Resolution Imaging of the Graded Photonic Crystal with Negative Refraction
By
Progress In Electromagnetics Research M, Vol. 25, 185-195, 2012
Abstract
In this paper, super-resolution imaging and negative refraction by a two-dimensional (2D) triangular lattices graded photonic crystal (GPC) were studied. The graded photonic crystal (GPC) was obtained by varying the radius in each row so that its effective refractive index changes along the transverse direction. By using Plane Wave Expansion (PWE) method and Finite-Difference Time-Domain (FDTD) method, we show that negative refraction and superlensing can be realized in the designed graded photonic crystal. Numerical simulations show that the photonic crystal structures and frequency have an impact on the resolution.
Citation
Meiling Liu Maojin Yun Feng Xia Weijin Kong Yong Wan Jian Liang Wei Lv Huiyue Tan , "Super-Resolution Imaging of the Graded Photonic Crystal with Negative Refraction," Progress In Electromagnetics Research M, Vol. 25, 185-195, 2012.
doi:10.2528/PIERM12070616
http://www.jpier.org/PIERM/pier.php?paper=12070616
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

3. Shelby, R. A., et al., "Microwave transmission through a two-dimensional, isotropic, lefthanded metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

4. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.
doi:10.1103/PhysRevLett.90.137401

5. Aydin, K., I. Bulu, and E. Ozbay, "Subwavelength resolution with a negative-index metamaterial superlens," Appl. Phys. Lett., Vol. 90, 254102, 2007.
doi:10.1063/1.2750393

6. Lu, W. T. and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express, Vol. 13, 10673, 2005.
doi:10.1364/OPEX.13.010673

7. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696, 2000.
doi:10.1103/PhysRevB.62.10696

8. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104, 2002.
doi:10.1103/PhysRevB.65.201104

9. Foteinopoulou, S. and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B, Vol. 67, 235107, 2003.
doi:10.1103/PhysRevB.67.235107

10. Berrier, A., M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett., Vol. 93, 073902, 2004.
doi:10.1103/PhysRevLett.93.073902

11. Hsu, H. T, T. W. Chang, T. J. Yang, B. H. Chu, C. J. Wu, and , "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
doi:10.1163/156939310793699073

12. Dong, G., J. Zhou, X. Yang, and X. Meng, "Multi-refraction with same polarization state in two dimensional triangular photonic crystals," Progress In Electromagnetics Research, Vol. 128, 91-103, 2012.

13. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302

14. Wang, X., Z. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two-dimensional photonic crystal," Opt. Express, Vol. 12, 2919, 2004.
doi:10.1364/OPEX.12.002919

15. Gajic, R. , R. Meisels, F. Kuchar, and K. Hingerl, "All-angle left-handed negative refraction in Kagome and honeycomb lattice photonic crystals," Phys. Rev. B, Vol. 73, 165310, 2006.
doi:10.1103/PhysRevB.73.165310

16. Jin, Y. and S. L. He, "Negative refraction of complex lattices of dielectric cylinders," Phy. Lett. A, Vol. 360, 461, 2007.
doi:10.1016/j.physleta.2006.06.011

17. Dong, G. Y., X. L. Yang, and L. Z. Cai, "Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography," Opt. Express, Vol. 18, 16302, 2010.
doi:10.1364/OE.18.016302

18. Sun, J., Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, "Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab," Photon. Nanostructures, Vol. 8, 163, 2010.
doi:10.1016/j.photonics.2010.03.001

19. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
doi:10.1103/PhysRevB.68.045115

20. Zhang, X., "Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens," Phys. Rev. B, Vol. 70, 195110, 2004.
doi:10.1103/PhysRevB.70.195110

21. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

22. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185, 1994.
doi:10.1006/jcph.1994.1159

23. Cabuz, A. I. , E. Centeno, and D. Cassagne, "Superprism effect in bidimensional rectangular photonic crystals," Appl. Phys. Lett.,, Vol. 84, 2031, 2004.
doi:10.1063/1.1688981

24. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, New Jersey, 1995.

25. Benedicto, J., R. Pollµes, A. Moreau, and E. Centeno, "Large negative lateral shifts due to negative refraction," Opt. Lett., Vol. 36, 2539, 2011.
doi:10.1364/OL.36.002539

26. Shi, P., K. Huang, and Y. P. Li, "Enhance the resolution of photonic crystal negative refraction imaging by metal grating," Opt. Lett., Vol. 37, 359, 2012.
doi:10.1364/OL.37.000359

27. Krayzel, F., R. Pollµes, A. Moreau, M. Mihailovic, and G. Granet, "Simulation and analysis of exotic non-specular phenomena," J. Europ. Opt. Soc. Rap. Public., Vol. 5, 10025, 2010.
doi:10.2971/jeos.2010.10025

28. Ruan, Z. C., "Dispersion engineering: Negative refraction and designed surface plasmons in periodic structures,", Ph.D. Thesis in Microelectronics and Applied Physics Stockholm, 31-35, Sweden, 2007.