Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-25
Computation of the Modes of Elliptic Waveguides with a Curvilinear 2D Frequency-Domain Finite-Difference Approach
By
Progress In Electromagnetics Research M, Vol. 26, 69-84, 2012
Abstract
A scalar Frequency-Domain Finite-Difference approach to the mode computation of elliptic waveguides is presented. The use of an elliptic cylindrical grid allows us to take exactly into account the curved boundary of the structure and a single mesh has been used both for TE and TM modes. As a consequence, a high accuracy is obtained with a reduced computational burden, since the resulting matrix is highly sparse.
Citation
Alessandro Fanti Giuseppe Mazzarella Giorgio Montisci Giovanni Andrea Casula , "Computation of the Modes of Elliptic Waveguides with a Curvilinear 2D Frequency-Domain Finite-Difference Approach," Progress In Electromagnetics Research M, Vol. 26, 69-84, 2012.
doi:10.2528/PIERM12080806
http://www.jpier.org/PIERM/pier.php?paper=12080806
References

1. Conciauro, G., et al., "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Techniques,, Vol. 32, 1495-1504, 1984.
doi:10.1109/TMTT.1984.1132880

2. Accatino, L., et al., "Elliptical cavity resonators for dual-mode narrowband filters," IEEE Trans. Microwave Theory Techniques, 2393-2401, 1997.
doi:10.1109/22.643850

3. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microwave Theory Techniques, Vol. 15, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521

4. Chan, K. L. and S. R. Judah, "Mode-matching analysis of a waveguide junction formed by a circular and a larger elliptic waveguide," IEE Proc. Microw. Antennas Propag, Vol. 145, 123-127, 1998.
doi:10.1049/ip-map:19981216

5. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., Ch. 7, Wiley-IEEE Press, New York, 2001.

6. Mazzarella, G. , G. Montisci, and , "Accurate modeling of coupling junctions in dielectric covered waveguide slot arrays," Progress In Electromagnetics Research M, Vol. 17, 59-71, 2011.

7. Montisci, G., G. Mazzarella, and G. A. Casula, "Effective analysis of a waveguide longitudinal slot with cavity," IEEE Trans. Antennas Propag., Vol. 60, 3104-3110, 2012.
doi:10.1109/TAP.2012.2196953

8. Mazzarella, G. and G. Montisci, "Wideband equivalent circuit of a centered-inclined waveguide slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 1, 133-151, 2000.
doi:10.1163/156939300X00671

9. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1203-1217, 2004.
doi:10.1163/1569393042955333

10. Mazzarella, G. and G. Montisci, "A rigorous analysis of dielectric-covered narrow longitudinal shunt slots with finite wall thickness," Electromagnetics, Vol. 19, 407-418, 1999.
doi:10.1080/02726349908908660

11. Mazzarella, G. and G. Montisci, "Accurate characterization of the interaction between coupling slots and waveguide bends in waveguide slot arrays," IEEE Trans. Microwave Theory Techniques, Vol. 48, 1154-1157, 2000.
doi:10.1109/22.848500

12. Casula, G. A., G. Mazzarella, and G. Montisci, "Effect of the feeding t-junctions in the performance of planar waveguide slot arrays," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 953-956, 2012.
doi:10.1109/LAWP.2012.2213233

13. Chu, L. J., "Electromagnetic waves in elliptic hollow pipes of metal ," J. Appl. Phys., Vol. 9, 583-591, 1938.
doi:10.1063/1.1710459

14. Marcuvitz, N., Waveguide Handbook, Peregrinius, London, 1986.
doi:10.1049/PBEW021E

15. Kretzschmar, J. G., "Wave propagation in hollow conducting elliptical waveguides," IEEE Trans. Microwave Theory Techniques, Vol. 18, 547-554, 1970.
doi:10.1109/TMTT.1970.1127288

16. Zhang, S. and Y. Chen, "Eigenmodes sequence for an elliptical waveguides with arbitrary ellipticity," IEEE Trans. Microwave Theory Techniques,, Vol. 43, 227-230, 1995.
doi:10.1109/22.362983

17. Shu, C., "Analysis of elliptical waveguides by differential quadrature method," IEEE Trans. Microwave Theory Techniques, Vol. 48, 319-322, 2000.
doi:10.1109/22.821786

18. Weiland, T., "Three dimensional resonator mode computation by finite difference method," IEEE Trans. Magn., Vol. 21, 2340-2343, 1985.
doi:10.1109/TMAG.1985.1064178

19. Fanti , A., G. Mazzarella, and G. Montisci, "Curvilinear vector finite difference approach to the computation of waveguide modes," Advanced Electromagnetics, Vol. 1, 29-37, 2012.

20. Zhao, , Y. J., , K. L. Wu, and K. K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microwave Theory Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447

21. Hwang, J. N., "A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer," IEEE Trans. Microwave Theory Techniques, Vol. 53, 653-659, 2005.
doi:10.1109/TMTT.2004.840569

22. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research,, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

23. Podwalski, J., P. Kowalczyk, and M. Mrozowski, "Efficient multiscale finite difference frequency domain analysis using multiple macromodels with compressed boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008

24. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006

25. Lovranos, C. S. and G. A. Kyriacou, "Eigenvalue analysis of curved waveguides employing an orthogonal curvilinear frequency-domain finite-difference method," IEEE Trans. Microwave Theory Techniques, Vol. 57, 594-611, 2009.
doi:10.1109/TMTT.2009.2013314

26. Taflove, A., Advances in Computational Electrodynamics --- The FDTD Method, Artech House, London, 1995.

27. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, 165-167, 1992.
doi:10.1109/75.134342

28. Choi, D. H. and W. J. R. Hoefer, "The finite-difference-time-domain method and its applications to eigenvalue problems," IEEE Trans. Microwave Theory Techniques, Vol. 34, 1464-1470, 1986.
doi:10.1109/TMTT.1986.1133564

29. Fanti, A. and G. Mazzarella, "Finite differences single grid evaluation of TE and TM modes in metallic waveguides," Loughborough Antennas Propag. Conf., 517-520, Loughborough,UK, 2010.

30. Itoh, T., Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Sect. 1.1, Wiley, New York, 1989.

31. Golub, G. H. and C. F. Van Loan, "The Matrix Computations," The Johns Hopkins University Press, Baltimore MD, 1996.