Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-26
Electromagnetic Characteristics of Conformal Dipole Antennas Over a PEC Sphere
By
Progress In Electromagnetics Research M, Vol. 26, 85-100, 2012
Abstract
Rigorous mathematical Method of Moments (MoMs) for analyzing various radiating spherical structures is presented in this paper by using Dyadic Green's Functions (DGFs) in conjunction with Mixed Potential Integral Equation (MPIE) formulation. With the aid of linear Rao-Wilton-Glisson (RWG) triangular basis functions and by converting spherical DGFs to Cartesian DGFs, a conformal dipole antenna in free space and over a Perfect Electric Conductor (PEC) sphere is analyzed. The characteristics of such antennas are computed by applying multilayer spherical DGFs and asymptotic approximation methods. Mutual couplings between elements of a conformal dipole antenna array in free space and over a conducting sphere are also investigated. Good agreement between the computational results obtained by the proposed methods and those obtained from commercial simulator packages shows accuracy and high convergence speed of the presented methods.
Citation
Javad Soleiman-Meiguni Manouchehr Kamyab Ahmad Hosseinbeig , "Electromagnetic Characteristics of Conformal Dipole Antennas Over a PEC Sphere," Progress In Electromagnetics Research M, Vol. 26, 85-100, 2012.
doi:10.2528/PIERM12081807
http://www.jpier.org/PIERM/pier.php?paper=12081807
References

1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves, 1995.

2. Tai, C. T., Dyadic Green's Functions in Electromagnetics Theory, IEEE Press Series on Electromagnetic Waves, 1994.

3. Okhmatovsk, V. I. and A. C. Cangellaris, "Efficient calculation of the electromagnetic dyadic Green's function in spherical layered media," IEEE Trans. Antennas Propag., Vol. 51, No. 12, 3209-3220, Dec. 2003.
doi:10.1109/TAP.2003.820952

4. He, M. and X. Xu, "Closed-form solutions for analysis of cylindrically conformal microstrip antennas with arbitrary radii," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 518-525, Jan. 2005.
doi:10.1109/TAP.2004.838772

5. Tam, W. Y. and K. M. Luk, "Resonance in spherical-circular microstrip structures," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 4, 700-704, Apr. 1991.
doi:10.1109/22.76435

6. Huia, H. T. and E. K. N. Yungb, "Dyadic Green's functions of a spherical cavity filled with a Chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 9, 1229-1229, 2001.
doi:10.1163/156939301X01138

7. Khamas, S. K., "Asymptotic extraction approach for antennas in a multilayered spherical media," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 1003-1008, Mar. 2010.
doi:10.1109/TAP.2009.2039333

8. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "Electromagnetic dyadic Green's function in spherically multilayered media," IEEE Trans. Microw. Theory Tech., Vol. 42, 2302-2310, Dec. 1994.

9. Macon, C. A., K. D. Trott, and L. C. Kempel, "A practical approach to modeling doubly curved conformal microstrip antennas," Progress In Electromagnetics Research, Vol. 40, 295-314, 2003.
doi:10.2528/PIER02122903

10. Arakakia, D. Y., D. H. Wernerb, and R. Mittrac, "A technique for analyzing radiation from conformal antennas mounted on arbitrarily-shaped conducting bodies," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 11, 1505-1523, 2000.
doi:10.1163/156939300X00266

11. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Taylor & Francis Group, 2008.

12. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

13. Harrington, R. F., Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Waves, 1991.

14. Khamas, S. K., "Electromagnetic radiation by antennas of arbitrary shape in a layered spherical media," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3827-383, Dec. 2009.
doi:10.1109/TAP.2009.2033444

15. Harrington, R. F., Time-Harmonic Electromagnetic Fields, IEEE Press, John Wiley & Sons, Inc., 2001.
doi:10.1109/9780470546710

16. Pozar, D. M., "Microwave Engineering," John Wiley & Sons, Inc., Vol. 3rd, 2005.

17., "CST Reference Manual,", Computer Simulation Technology, Darmstadt, Germany, 2008.

18. Hansen, R. C., Geometrical Theory of Diffraction, IEEE Press, New York, 1981.