Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-01
Uncertainty Minimization in Permittivity Measurements in Shielded Dielectric Resonators
By
Progress In Electromagnetics Research M, Vol. 26, 127-141, 2012
Abstract
In this paper we present a novel general methodology which ensure a minimum uncertainty in the measurement of the real part of the permittivity of a material measured using cylindrical shielded dielectric resonators. The method is based on the fact that for any given value of the dielectric permittivity there is an optimal radius of the cylindrical dielectric rod sample. When the dielectric rod sample has the optimum radius, the width of the coverage interval associated to the real part of the dielectric permittivity measurement result --- for a given confidence level --- is reduced due to a lower sensitivity of the dielectric permittivity to be measured versus the variations in the resonant frequency. The appropriated radius of a given sample under test is calculated using Monte Carlo simulations for a specific mode and a specific resonant frequency. The results show that the confidence interval could be reduced by one order of magnitude with respect to its maximum width predicted by the uncertainty estimation performed using the Monte Carlo method (MCM) as established by the supplement 1 of the Guide to the Expression of Uncertainty in Measurement (GUM). The optimum radius of the sample under examination is fundamentally determined by the electromagnetic equations that describe the measurement and does not depend specifically of the sources of uncertainty considered.
Citation
Eduardo Paez Marco A. Azpurua Ciro Tremola Roberto Callarotti , "Uncertainty Minimization in Permittivity Measurements in Shielded Dielectric Resonators," Progress In Electromagnetics Research M, Vol. 26, 127-141, 2012.
doi:10.2528/PIERM12082811
http://www.jpier.org/PIERM/pier.php?paper=12082811
References

1. Paez, E., M. A. Azpurua, C. Tremola, and R. C. Callarotti, "Uncertainty estimation in complex permittivity measurements by shielded dielectric resonator technique using the monte carlo method," Progress In Electromagnetics Research B, Vol. 41, 101-119, 2012.

2. Ong, C. K. , L. F. Chen, V. V. Varadan, C. P. Neo, and V. K. Varadan, Microwave Electronics Measurement and Materials Characterization, John Wiley & Sons, Ltd., 2004.
doi:10.1002/0470020466

3. Vanzura, E. J., J. R. Baker-Jarvis, J. H. Grosvenor, and M. D. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Transactions on Microwave Theory and echniques, Vol. 42, No. 11, 2063-2070, Nov. 1994.
doi:10.1109/22.330120

4. Weil, C. M. and W. A. Kissick, "The electromagnetic properties of materials program at nist," 8th IEEE Instrumentation and Measurement Technology Conference, IMTC, Conference Record, 626-630, May 1991.
doi:10.1109/IMTC.1991.161673

5. Waldron, R. A., "Theory of a strip-line cavity for measurement of dielectric constants and gyromagnetic-resonance line-widths," IEEE Transactions on Microwave Theory and Techniques, Vol. 12, No. 1, 123-131, Jan. 1964.
doi:10.1109/TMTT.1964.1125760

6. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, Jr., M. D. Janezic, C. A. Jones, B. Riddle, C. M. Weil, and . Krupka, "Dielectric characterization of low-loss materials a comparison of techniques," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 4, 571-577, Aug. 1998.
doi:10.1109/94.708274

7. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved tech-nique for determining complex permittivity with the transmission/reflection method Theory and Techniques," IEEE Transactions on Microwave, Vol. 38, No. 8, 1096-1103, Aug. 1990.
doi:10.1109/22.57336

8. Du, X.-H., Q.-M. Wang, and K. Uchino, "Accurate determination of complex materials coe±cients of piezoelectric resonators," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , Vol. 50, No. 3, 312-320, Mar. 2003.
doi:10.1109/TUFFC.2003.1193625

9. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 52-57, Jan. 1997.
doi:10.1109/22.552032

10. Bureau International des Poids et Mesures, Joint Committee for Guides in Metrology , Evaluation of Measurement Data --- Guide to the Expression of Uncertainty in Measurement, 1st Ed., BIPM, 2008.

11. Bureau International des Poids et Mesures, Joint Committee for Guides in Metrology, "Evaluation of Measurement Data --- Supplement 1 to the \Guide to the Expression of Uncertainty in Measurement --- | Propagation of Distributions using a Monte Carlo Method," BIPM, 2008.