Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-17
Unconditionally Stable Leapfrog Adi-FDTD Method for Lossy Media
By
Progress In Electromagnetics Research M, Vol. 26, 173-786, 2012
Abstract
This paper presents an unconditionally stable threedimensional (3-D) leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method for lossy media. Conductivity terms of lossy media are incorporated into the leapfrog ADI-FDTD method in an analogous manner as the conventional explicit FDTD method since the leapfrog ADI-FDTD method is a perturbation of the conventional explicit FDTD method. Implementation of the leapfrog ADI-FDTD method for lossy media with special consideration for boundary condition is provided. Numerical results and examples are presented to validate the formulation.
Citation
Theng Huat Gan Eng Leong Tan , "Unconditionally Stable Leapfrog Adi-FDTD Method for Lossy Media," Progress In Electromagnetics Research M, Vol. 26, 173-786, 2012.
doi:10.2528/PIERM12090307
http://www.jpier.org/PIERM/pier.php?paper=12090307
References

1. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model, Vol. 22, No. 2, 187-200, 2009.
doi:10.1002/jnm.707

2. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

3. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

4. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 170-177, Jan. 2008.
doi:10.1109/TAP.2007.913089

5. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, Jan. 2012.
doi:10.2528/PIERM11111803

6. Yang, S. C., Z. Chen, Y. Yu, and W. Y. Yin, "The unconditionally stable one-step leapfrog ADI-FDTD method and its comparisons with other FDTD methods," IEEE Microw. Wireless Comp. Lett., Vol. 21, 640-642, Dec. 2011.
doi:10.1109/LMWC.2011.2173182

7. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, May 1966.

8. Taflove, A. and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Progress In Electromagnetics Research, Vol. 2, 287-373, 1990.

9. Heh, D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801

10. Chen, J. and J. Wang, "PEC condition implementation for the ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 49, 526-530, Mar. 2007.
doi:10.1002/mop.22185

11. Jolani, F., Y. Yu, and Z. Chen, "A hybrid FDTD and leapfrog ADI-FDTD method with PML implementation," IEEE MTT-S International Microwave Symposium Digest (MTT), 2011.

12. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwells equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904

13. Chen, C. C. P., T. W. Lee, N. Murugesan, and S. C. Hagness, "Generalized FDTD-ADI: An unconditionally stable full-wave Maxwell's equations solver for VLSI interconnect modeling," IEEE/ACM Int. Conf. on Computer Aided Design, ICCAD, 156-163, 2000.

14. Gan, T. H. and E. L. Tan, "Mur absorbing boundary conditions Mur absorbing boundary conditions," IEEE Asia Pacific Conference on Antenna and Propagation, Singapore, Aug. 2012.

15. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 14, 177-192, 2010.

16. Tay, W. C. and E. L. Tan, "Implementation of PMC and PEC boundary conditions for efficient fundamental ADI and LOD FDTD," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 563-573, 2010.

17. Tay, W. C, , D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

18. Benford, J., J A. Swegle, and E. Schamiloglu, High Power Microwaves, 2nd Ed., Taylor and Francis Group, CRC Press, 2007.
doi:10.1201/9781420012064

19. Hippel, A., Dielectric Materials and Applications, 2nd Ed., Artech House, 1995.

20. Wang, X. H, W. Y. Yin, Y. Yu, Z. Chen, J.Wang, and Y. Guo, "A convolutional perfect matched layer (CPML) for one-step leapfrog ADI-FDTD method and its applications to EMC problems," IEEE Trans. Electromagn. Compat., 2012.

21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, MA, 2005.