Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-31
Efficient Evaluation of the Longitudinal Coupling Impedance of a Plane Strip
By
Progress In Electromagnetics Research M, Vol. 26, 251-265, 2012
Abstract
We discuss the electromagnetic interaction between a travelling charge particle and a perfectly conducting strip of a negligible thickness. The particle travels at a constant velocity along a straight line parallel to the axis of symmetry of the strip. The efficiency of the proposed solution is proved by evaluating the longitudinal coupling impedance in a wide range of parameters.
Citation
Dario Assante Luigi Verolino , "Efficient Evaluation of the Longitudinal Coupling Impedance of a Plane Strip," Progress In Electromagnetics Research M, Vol. 26, 251-265, 2012.
doi:10.2528/PIERM12091309
http://www.jpier.org/PIERM/pier.php?paper=12091309
References

1. Heifets, S. A. and S. A. Kheifets, "Coupling impedance in modern accelerators," Reviews of Modern Physics, Vol. 63, 631-673, 1993.
doi:10.1103/RevModPhys.63.631

2. Kheifets, S. A. and B. W. Zotter, "Impedances and Wakes in High-Energy Particle Accelerators," World Scientific, Singapore, 1998.

3. Palumbo, L., V. G. Vaccaro, and M. Zobov, "Wake fields and impedance," Proceedings of CAS CERN Accelerator School CERN 95-06 , 331-390, 1995.

4. Chao, A. W. and M. Tigner, Handbook of Accelerator Physics and Engineering, World Scientific, Singapore, 1998.

5. Kuehn, E., "A mode-matching method for solving field problems in waveguide and resonator circuits," Archiv fuer Elektronik und Uebertragungstechnik, Vol. 27, 511-518, Dec. 1973..

6. Legenkiy, M. N. and A. Y. Butrym, "Method of mode matching in time domain," Progress In Electromagnetics Research B, Vol. 22, 257-283, 2010.
doi:10.2528/PIERB10043003

7. Assante, D., D. Davino, S. Falco, F. Schettino, and L. Verolino, "Coupling impedance of a charge travelling in a drift tube," IEEE Trans. on Mag., Vol. 41, No. 5, 1924-1927, 2005.
doi:10.1109/TMAG.2005.846226

8. Fujita, K. and H. Kawaguchi, "Time domain numerical simulation method based on EFIE and MFIE for axis-symmetric structure objects," Progress In Electromagnetic Research Symposium, 627-630, Pisa, Italy, 2004.

9. Censor, D., "Free-space relativistic low-frequency scattering by moving objects," Progress In Electromagnetics Research, Vol. 72, 195-214, 2007.
doi:10.2528/PIER07030702

10. Censor, D., "Application-oriented relativistic electrodynamics," Progress In Electromagnetics Research, Vol. 29, 107-168, 2000.
doi:10.2528/PIER99120201

11. Idemen, M. and A. Alkumru, "Influence of motion on the edge-diffraction," Progress In Electromagnetics Research B, Vol. 6, 153-168, 2008.
doi:10.2528/PIERB08031210

12. Censor, D., "Broadband spatiotemporal differential-operator representations for velocity depending scattering," Progress In Electromagnetics Research, Vol. 58, 51-70, 2006.

13. Mostacci, A., et al., "Wakefields due to surface waves in a beam pipe with a periodic rough surface," Phys. Rev. ST Accel. Beams, Vol. 5, Apr. 2002.

14. Miano, G., L. Verolino, and V. G. Vaccaro, "Time domain analysis of a charge particle travelling along the axis of a circular waveguide," Il Nuovo Cimento, Vol. 111B, 659-664, 1996.

15. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Academic Press, New York, 2007.

16. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proc. R. Soc. Lond., Vol. A429, 399-427, 1990.

17. Cesarano, C., "Identities and generating functions on Chebyshev polynomials ," Georgian Mathematical Journal, Vol. 19, 427-440, 2012.

18. Assante, D. , S. Falco, M. Lucido, G. Panariello, F. Schettino, and L. Verolino, "Shielding effect of a strip of finite thickness," Electrical Engineering, Vol. 89, No. 2, 79-87, 2006.
doi:10.1007/s00202-005-0321-3

19. Sautbekov, S. S., "Diffraction of plane wave by strip with arbitrary orientation of wave vector," Progress In Electromagnetics Research M, Vol. 21, 117-131, 2011.
doi:10.2528/PIERM11071801

20. Assante, D., S. D'Agostino, and L. Verolino, "Shielding effect of a thin strip," Electrical Engineering, Vol. 9, No. 4-5, 177-185, 2009.
doi:10.1007/s00202-009-0129-7

21. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.