Vol. 26
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-19
Permanent Magnet Bearings: Analysis of Plane and Axisymmetric V-Shaped Element Design
By
Progress In Electromagnetics Research M, Vol. 26, 205-223, 2012
Abstract
Applications of permanent magnets bearings have gained a new interest thanks to the development of rare earth materials, characterised by residual magnetic induction greater than 1 T. The present paper proposes a new geometry for permanent magnets bearings with V-shaped elements, both for a plane slide and for cylindrical bearings. The aim of this geometry is to give new possibilities to the application of these bearing systems, by reducing its inherent instability. A design method, involving Finite Elements and Magnetic Field Integral Equations analyses, is also described for defining the most suitable V-opening angle and the two magnetisation directions. These parameters can be varied in order to reduce the unstable force in the coupling, and to reach the desired force and stiffness in the stable direction. The design is founded on the evaluation of four ``geometric'' vectors, that depend on the geometry of the elements. Some results are reported for a reference geometry for both the slide and the cylindrical bearings.
Citation
Francesca Di Puccio Roberto Bassani Enrico Ciulli Antonino Musolino Rocco Rizzo , "Permanent Magnet Bearings: Analysis of Plane and Axisymmetric V-Shaped Element Design," Progress In Electromagnetics Research M, Vol. 26, 205-223, 2012.
doi:10.2528/PIERM12091406
http://www.jpier.org/PIERM/pier.php?paper=12091406
References

1. Donald, F., "A passive magnetic-thrust bearing for energy-storage fly wheels," ASLE Trans., Vol. 25, No. 1, 7-16, 1980.

2. Hull, R. J., "Attractive levitation for high-speed ground transport with large guideway clearance and alternating gradient stabilization," IEEE Trans. Magn., Vol. 25, No. 5, 3272-3274, 1989.

3. Jayawant, B. V., Electromagnetic Levitation and Suspension Systems, E. J. Arnold, 1981.

4. Parker, J. R., "Advance Permanent Magnetism," Wiley & Sons, 1990.

5. Fukunaga, H. and Y. Kanai, "Modelling of nano-crystalline magnets using mcromagnetic theory," Proc. X Int. Congr. Magn., 237-250, 1998.

6. Musolino, A., R. Rizzo, M. Tucci, and V. M. Matrosov, "A new passive Maglev system based on eddy current stabilization," IEEE Trans. Magn., Vol. 45, No. 3, 984-987, 2009.

7. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.

8. Bassani, R. and S. Villani, "Passive magnetic bearings: The conic-shaped bearing," Proc. Inst. Mech. Engrs., Vol. 213, No. 1, 151-161, 1999.

9. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.

10. Babic, S. I. and C. Akyel, "Magnetic force between inclined circular loops (Lorentz approach)," Progress In Electromagnetics Research B, Vol. 38, 333-349, 2012.

11. Ausserlechner, U., "Closed analytical formulae for multi-pole magnetic rings," Progress In Electromagnetics Research B, Vol. 38, 71-105, 2012.

12. Janssen, J. L. G., J. J. H. Paulides, and E. A. Lomonova, "Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations," Progress In Electromagnetics Research, Vol. 128, 75-90, 2012.

13. Babic, S. I., C. Akyel, F. Sirois, G. Lemarquand, R. Ravaud, and V. Lemarquand, "Calculation of the mutual inductance and the magnetic force between a thick circular coil of the rectangular cross section and a thin wall solenoid (Integro-Differential approach)," Progress In Electromagnetics Research B, Vol. 33, 220-237, 2011.

14. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetic Research M, Vol. 14, 263-277, 2010.

15. Earnshaw, S., "On the nature of molecular forces which regulate the constitution of luminoferous ether," Trans. Comb. Phil. Soc., Vol. 7, 97-112, 1842.

16. Van der Heide, H., "Stabilization by oscillation," Philips Tech. Rev., Vol. 34, No. 273, 61-72, 1974.

17. Smythe, W. R., Static and Dynamic Electricity, Mc Graw Hill, 1959.

18. Barmada, S., A. Musolino, A. Raugi, and R. Rizzo, "Force and torque evaluation in hybrid FEM-MOM formulations," IEEE Trans. Magn., Vol. 37, No. 5, 3108-3111, 2011.

19. Di Puccio, F., "Permanent magnet bearing design: Optimising the magnetisation direction," Int. Jour. Appl. Mech. and Eng.,, Vol. 9, No. 4, 655-674, 2004.

20. Musolino, A. and R. Rizzo, "Numerical analysis of brush commutation in helical coil electromagnetic launchers," IET Science, Measurement & Technology, Vol. 5, No. 4, 147-154, 2011.

21. Musolino, A. and R. Rizzo, "Numerical modeling of helical launchers," IEEE Trans. Plasma Sci., Vol. 39, No. 3, 935-940, 2011.

22. Minciunescu, P., "Contributions to integral equation method for 3D magnetostatic problems," IEEE Trans. Magn., Vol. 34, No. 5, 2461-2464, 1998.

23. Musolino, A., R. Rizzo, E. Tripodi, and M. Toni, "Modeling of electromechanical devices by GPU-accelerated integral formulation," Int. J. Numer. Model., Published online in Wiley Online Library (wileyonlinelibrary.com),1-21, 2012,DOI:10.1002/jnm.1860 .

24. Musolino, A., R. Rizzo, E. Tripodi, and M. Toni, "Acceleration of electromagnetic launchers modeling by using graphic processing unit," IEEE 16th EML Symposium Conference Proceedings, 1-6, Beijing, May 15-19, 2012.

25. Barmada, S., A. Musolino, M. Raugi, and R. Rizzo, "Numerical simulation of a complete generator-rail launch system," IEEE Trans. Magn., Vol. 41, No. 1, 369-374, 2005.

26. Barmada, S., A. Musolino, M. Raugi, and R. Rizzo, "Analysis of the performance of a combined coil-rail launcher," IEEE Trans. Magn., Vol. 39, No. 1, 103-107, 2003.

27. Bassani, R., E. Ciulli, F. Di Puccio, and A. Musolino, "Study of conic permanent magnets bearings," Meccanica, Vol. 36, No. 6, 745-754, 2001.