Vol. 26

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Effects of Microwave Frequency on Electron Energy Distribution Function and Air Breakdown Using the Fluid Model

By Pengcheng Zhao, Cheng Liao, Wenbin Lin, and Ju Feng
Progress In Electromagnetics Research M, Vol. 26, 279-287, 2012


The non-equilibrium electron energy distribution function (EEDF) obtained via solving the Boltzmann equation is introduced into the fluid model, and the effects of the microwave frequency on the EEDF and air breakdown are investigated. Numerical simulations show that the breakdown threshold of the fluid model with the non-equilibrium EEDF agrees well with that of the reported experiments. The microwave frequency plays an important role on the shape of the non-equilibrium EEDF at low pressures. The breakdown time at the low pressures predicted by the Maxwellian EEDF is shorter than that from the non-equilibrium EEDF in low-frequency oscillating fields, while matches the latter in high-frequency oscillating fields.


Pengcheng Zhao, Cheng Liao, Wenbin Lin, and Ju Feng, "Effects of Microwave Frequency on Electron Energy Distribution Function and Air Breakdown Using the Fluid Model," Progress In Electromagnetics Research M, Vol. 26, 279-287, 2012.


    1. Lofgen, M., D. Anderson, M. Lisak, and L. Lundgren, "Breakdown-induced distortion of high power microwave pulses in air," Phys. Fluids B, Vol. 3, No. 12, 3528-3531, 1991.

    2. Nielsen, P. E., Effect of Directed Energy Weapons, Directed Energy Profession Society, New Mexico, 2009.

    3. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of cmos inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.

    4. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of Te01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.

    5. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.

    6. Kim, J., S. P. Kuo, and P. Kossey, "Modelling and numerical simulation of microwave pulse propagation in an air-breakdown environment," J. Plasma Phys., Vol. 53, No. 3, 253-266, 1995.

    7. Nam, S. K. and J. P. Verboncoeur, "Global model for high power microwave breakdown at high pressure in air," Computer Phys. Communications, Vol. 180, 628-635, 2009.

    8. Tang, T., C. Liao, and W. B. Lin, "Characteristics of analysis of repetition frequency high-power microwave pulses in atmosphere," Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010.

    9. Zhao, P., C. Liao, and W. Lin, "Numerical studies of the propagation of high-power damped sine microwave pulse in the atmosphere," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2365-2378, 2011.

    10. Yee, J. H., R. A. Alvarez, D. J. Mayhall, D. P. Byrne, and J. Degroot, "Theory of intense electromagnetic pulse propagation through the atmosphere," Phys. Fluids, Vol. 29, No. 4, 1238-1244, 1986.

    11. Chaudhury, B. and J. Boeuf, "Computational studies of filamentary pattern formation in a high power microwave breakdown generated air plasma," IEEE Trans. Plasma Sci., Vol. 38, No. 9, 2281-2288, 2010.

    12. Zhao, P., C. Liao, W. Lin, C. Chang, and H. Fu, "Numerical studies of the high power microwave breakdown in gas using the fluid model with a modified electron energy distribution function," Phys. Plasmas, Vol. 18, 102111, 2011.

    13. Hagelaar , G. J. M. and L. C. Pitchford, "Solving the Boltzmann equation to obtain electron transport coefficients and rate coe±cients for fluid models," Plasma Sources Sci. Technol., Vol. 14, 722-733, 2005.

    14. Vahedi, V. and M. Surendra, "A monte carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges," Comput. Phys. Comm., Vol. 87, No. 1-2, 179-198, 1995.

    15. Itikawa, Y., "Cross sections for electron collisions with nitrogen molecules," J. Phys. Chem. Ref. Data, Vol. 35, No. 1, 31-53, 2006.

    16. Peterson, L. R. and J. E. Allen, "Electron impact cross sections for argon," J. Chemical Phys., Vol. 56, No. 12, 6068-6076, 1972.

    17. Tetenbaum microwave breakdown of air from 1 to 1000Torr, S. J., A. D. Macdonald, and H. W. Bandel, "Pulsed," J. Appl. Phys., Vol. 42, 5871-5872, 1971.

    18. Cook, A. , M. Shapiro, and R. Temkin, "Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz," Appl. Phys. Lett., Vol. 97, 011504, 2010.

    19. Robert, R., "Optimization of HPM device parameters for maximum air transmission," Intense Microwave Pulses, Vol. 1872, 212-233, 1993.