Vol. 27

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Vector Mode Analysis of Optical Waveguides by Quadratic Spline Collocation Method

By Jianwei Mu, Haibo Liang, Xun Li, Bin Xu, and Wei-Ping Huang
Progress In Electromagnetics Research M, Vol. 27, 97-107, 2012


We present an accurate, efficient numerical analysis for vector modes of dielectric optical waveguide structures with an arbitrary refractive index profile using a quadratic spline collocation method (QSCM). The unknown weights of the polynomials are determined by forcing the errors at the collocation points to be zero. Consequently, the original second order differential equation is converted to a set of algebraic equations which can be solved by matrix techniques. The proposed QSCM method demonstrates better performance than the standard finite-difference method of the same convergence rate in terms of grid size with the same degree of computational complexity.


Jianwei Mu, Haibo Liang, Xun Li, Bin Xu, and Wei-Ping Huang, "Vector Mode Analysis of Optical Waveguides by Quadratic Spline Collocation Method," Progress In Electromagnetics Research M, Vol. 27, 97-107, 2012.


    1. Huang, W. ed., Methods for Modeling and Simulation of Guided-wave Optoelectronic Devices: Part I. Modes and Couplings, EMW Publishing, Cambridge, MA, 1995.

    2. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 1, 20-28, 1984.

    3. Koshiba, M. and K. Inoue, "Simple and efficient finite-element analysis of microwave and optical waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 371-377, 1992.

    4. Stern, M. S., "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. J., Vol. 135, No. 2, 56-63, 1988.

    5. Xu, C. L., W. P. Huang, M. S. Stern, and S. K. Chaudhuri, "Full-vectorial mode calculations by finite difference method," IEE Proc. Optoelectron, Vol. 142, No. 5, 281-286, 1994.

    6. Vassallo, C., "Improvement of finite difference method for step-index optical waveguides," Inst. Elect. Eng. Proc.--- J., Vol. 139, No. 2, 137-142, 1992.

    7. Yamauchi, J., M. Sekiguchi, O. Uchiyama, J. Shibayama, and H. Nakano, "Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides," IEEE Photon. Technol. Lett., Vol. 9, 961-963, 1997.

    8. Vassallo, C., "Interest of improved three-point formulas for finite-difference modeling of optical devices," J. Opt. Soc. Amer., Vol. 14, 3273-3284, 1997.

    9. Chiou, Y.-P., Y. C. Chiang, and H. C. Chang, "Improved three point formulas considering the interface conditions in the finite-di®erence analysis of step-index optical devices," J. Lightwave Technology, Vol. 18, No. 2, 243-251, 2000.

    10. Chiou, Y.-P. and C.-H. Du, "Arbitrary-order full-vectorial interface conditions and higher-order finite-difference analysis of optical waveguides," J. Lightwave Technology, Vol. 29, No. 22, 3445-3452, Nov. 2011.

    11. Chiou, Y.-P. and C.-H. Du, "Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis," OSA Optics Express, Vol. 18, No. 5, 4088-4102, Mar. 2010.

    12. Rogge, U. and R. Pregla, "Method of lines for the analysis of dielectric waveguides," J. Lightwave Technology, Vol. 11, 2015-2020, Dec. 1993.

    13. Vassallo, C., "1993-1995 optical mode solvers," Opt. Quantum Electron., Vol. 29, 95-114, 1997.

    14. Celler, G. K. and S. Cristoloveanu, "Frontiers of silicon-on-insulator," Applied Phys. Reviews, Vol. 93, No. 9, 4955-4978, 2003.

    15. Bogaerts, W., et al., "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technology, Vol. 23, No. 1, 2005.

    16. Chiang, P. J., et al., "Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations," IEEE J. Quantum Electronics, Vol. 44, No. 1, 56-66, 2008.

    17. Christara, C. C., "Quadratic spline collocation methods for elliptic partial differential equations," BIT, Vol. 34, No. 1, 33-61, 1994.

    18. Sharma, A. and S. Banerjee, "Method for propagation of total fields or beams through optical waveguides," Opt. Lett., Vol. 14, No. 1, 96-98, 1989.

    19. Xiao, J. B. and X. H. Sun, "Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method," Opt. Comm., Vol. 28, No. 14, 2835-2840, 2010.

    20. Huang, C. X., C. C. Huang, and J. Y. Yang, "A full-vectorialpseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles," IEEE J. Sel. Top. Quantum Electron., Vol. 11, No. 2, 457-465, 2005.

    21. Huang, C. C. and C. C. Huang, "An efficient and accurate semivectorial spectral collocation method for analyzing polarized modes of rib waveguides," J. Lightwave Technology, Vol. 23, No. 7, 2309-2317, 2005.

    22. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for Maxwell's equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.