Vol. 28
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-04
Use of Jonscher Model for Estimating the Thickness of a Concrete Slab by Technical GPR
By
Progress In Electromagnetics Research M, Vol. 28, 89-99, 2013
Abstract
The thickness measurement of concrete is one of the most important commercial applications of ground-penetrating radar (GPR) technique. This paper describes a procedure for estimating the thickness of concrete slab for different moisture contents (MCs) in frequency domain, as in Impulse-Response (IR) Method, over the radar frequency band 100 MHz-2 GHz). The method is based on predicting the reflected frequency spectrum through a concrete slab using Jonscher model. The procedure is explained and examples of results are presented.
Citation
Taoufik Bourdi Francois Boone Jamal Eddine Rhazi Gerard Ballivy , "Use of Jonscher Model for Estimating the Thickness of a Concrete Slab by Technical GPR," Progress In Electromagnetics Research M, Vol. 28, 89-99, 2013.
doi:10.2528/PIERM12102106
http://www.jpier.org/PIERM/pier.php?paper=12102106
References

1. ASTM C 1383, "Standard test method for measuring the P-wave speed and the thickness of concrete plates using the impact echo method,", 2010, DOI: 10.1520/C1383-04R10.
doi:10.3141/2070-02

2. Tinkey, Y. and L. D. Olson, "Applications and limitations of impact echo scanning for void detection in posttensioned bridge ducts," Transportation Research Record: Journal of the Transportation Research Board, Vol. 2070, 8-12, Dec. 2008.
doi:10.1088/0022-3727/45/40/405401

3. Bourdi, T., J. E. Rhazi, F. Boone, G. Ballivy, "Modelling dielectric-constant values of concrete: An aid to shielding e®ectiveness prediction and ground-penetrating radar wave technique interpretation," J. Phys. D: Appl. Phys., Vol. 45, 405401, 2012.

4. Loulizi, A., I. L. Al-Qadi, and S. Lahouar, "Ground-penetrating radar signal modeling to assess concrete structures," ACI Mater. J., Vol. 99, 28291, 2002.

5. Daniels, D. J., D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," Proceedings Institution of Electrical Engineers, Part F, Vol. 135, No. 4, 278-320, Aug. 1988.

6. Halabe, U. B., A. Sotoodehnia, K. R. Maser, and E. A. Kausel, "Modeling the electromagnetic properties of concrete," ACI Materials Journal, Vol. 90, No. 6, 552-563, Nov.-Dec. 1993.
doi:10.1088/0022-3727/41/20/205410

7. Bourdi, T., J. E. Rhazi, F. Boone, and G. Ballivy, "Application of jonscher model for the characterization of the dielectric permittivity of concrete," J. Phys. D: Appl. Phys., Vol. 41, 205410, 2008.
doi:10.1016/S0963-8695(01)00009-3

8. Soutsos, M. N. , J. H. Bungey, S. G. Millard, M. R. Shaw, and A. Patterson, "Dielectric properties of concrete and their influence on radar testing," NDT & E Int., Vol. 34, 41925, 2001.

9. Shaari, A., S. G. Millard, and J. H. Bungey, "Modelling the propagation of a radar signal through concrete as a low-pass filter," NDT & E Int., Vol. 37, 23742, 2004.

10. Stain, R. T., "Integrity testing," Civil Engineering, 55-59 and 77-87, United Kingdom, Apr. and May 1982.

11. Olson, L. D. and C. C. Wright, "Nondestructive testing for repair and rehabilitation," Concrete International,, Vol. 12, No. 3, 58-64, Mar. 1990.

12. Skolnik, M. L., Introduction to Radar Systems, 2nd Ed., McGraw Hill, New York, 1980.
doi: --- Either ISSN or Journal title must be supplied.