Vol. 28
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-28
Design of a Wireless Power Transfer System for High Power Moving Applications
By
Progress In Electromagnetics Research M, Vol. 28, 258-271, 2013
Abstract
In high power applications of wireless power transfer systems as Maglev, both a high transferred power and a high efficiency are essential. However, these two requirements usually show dissimilar profiles over a range of operating conditions. Magnetic and electric models for a capacitor compensated system are used to analyze the problem. Using the analysis outcome, a compromise is made to come to an acceptable design, achieving both requirements. In particular, appropriate design parameters and resonance frequency are obtained. The analytical results are confirmed by 3D FEM analysis.
Citation
Saeed Hasanzadeh Sadegh Vaez-Zadeh , "Design of a Wireless Power Transfer System for High Power Moving Applications," Progress In Electromagnetics Research M, Vol. 28, 258-271, 2013.
doi:10.2528/PIERM12102210
http://www.jpier.org/PIERM/pier.php?paper=12102210
References

1. Lee, H. W., K. C. Kim, and J. Lee, "Review of Maglev train technologies," IEEE Trans. on Magnetics, Vol. 42, No. 7, 1917-1925, Jul. 2006.

2. Cassat, A. and M. Jufer, "Maglev projects technology aspects and choices," IEEE Trans. Appl. Supercond., Vol. 12, No. 1, 915-925, Mar. 2002.
doi:10.1109/TASC.2002.1018549

3. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetic Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401

4. Janssen, J. L. G., J. J. H. Paulides, and E. A. Lomonova, "Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations," Progress In Electromagnetics Research, Vol. 128, 75-90, 2012.

5. Matrosov, V. M., A. Musolino, R. Rizzo, and M. Tucci, "A new passive maglev system based on eddy current stabilization," IEEE Trans. on Magnetics,, Vol. 45, No. 3, 984-987, Mar. 2009.
doi:10.1109/TMAG.2009.2012533

6. Di Puccio, F., A. Musolino, R. Rizzo, and E. Tripodi, "A self-controlled maglev system," Progress In Electromagnetics Research M, Vol. 26, 187-203, 2012.

7. Abel, E. and S. Third, "Contactless power transfer, an exercise in topology," IEEE Trans. on Magnetics, Vol. 20, No. 5, 1813-1815, 1984.
doi:10.1109/TMAG.1984.1063160

8. Elliott, G. A. J., G. A. Covic, D. Kacprzak, and J. T. Boys, "A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems," IEEE Trans. on Magnetics, Vol. 42, No. 10, 3389-3391, 2006.
doi:10.1109/TMAG.2006.879619

9. Woo, K. , H. Park, and Y. Cho, "Contactless energy transmission system for linear servo motor," IEEE Trans. on Magnetics, Vol. 41, No. 5, 1596-1599, 2005.
doi:10.1109/TMAG.2005.845025

10. Sergeant, P. and A. Van den Bossche, "Inductive coupler for contactless power transmission," IET Electric Power Applications, Vol. 2, No. 1, 1-7, 2008.
doi:10.1049/iet-epa:20070059

11. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

12. Song, B. M., R. Kratz, and S. Gurol, "Contactless inductive power pickup system for maglev applications," Proc. Conf. 37th IAS Ann. Meeting, Vol. 3, 1586-1591, 2002.

13. Peng, , L., O. Breinbjerg, and N. A. Mortensen, "Wireless energy transfer through non-resonant magnetic coupling," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1587-1598, 2010.
doi:10.1163/156939310792149795

14. Klontz, K., D. Divan, and D. Novotny, "An actively cooled 120-kW coaxial winding transformer for fast charging electric vehicles," IEEE Transactions on Industry Applications, Vol. 31, No. 6, 1257-1263, 1995.
doi:10.1109/28.475695

15. Hasanzadeh, S., S. Vaez-zadeh, and A. H. Isfahani, "Optimization of a contactless power transfer system for electric vehicles," IEEE Transactions on Vehicular Technology, Vol. 61, No. 8, 3566-3573, Oct. 2012.
doi:10.1109/TVT.2012.2209464

16. Novotny, D. W. and R. D. Lorenz, "Contactless power delivery system for mining applications," IEEE Transactions on Industry Applications, Vol. 3, No. 1, 1995.

17. Raabe, S., S. Member, J. T. Boys, and G. A. Covic, "A high power coaxial inductive power transfer pickup," PESC Conf., Vol. 2, No. 1, 4320-4325, 2008.

18. Lastowiecki, J. and P. Staszewski, "Sliding transformer with long magnetic circuit for contact-less electrical energy delivery to mobile receivers," IEEE Trans. on Industrial Electronics, Vol. 53, No. 6, 1943-1948, 2006.
doi:10.1109/TIE.2006.885473

19. Luo, X., S. Niu, S. L. Ho, and W. N. Fu, "A design method of magnetically resonanting wireless power delivery systems for bioimplantable devices," IEEE Trans. on Magnetics, Vol. 47, No. 10, 3833-3836, 2011.
doi:10.1109/TMAG.2011.2148108

20. Ho, S., J. Wang, W. Fu, and M. Sun, "A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1522-1525, 2011.
doi:10.1109/TMAG.2010.2091495

21. Villa, J. L., J. Sallan, A. Llombart, and J. F. Sanz, "Design of a high frequency inductively coupled power transfer system for electric vehicle battery charge," Applied Energy, Vol. 86, No. 3, 355-363, Mar. 2009.
doi:10.1016/j.apenergy.2008.05.009

22. Hasanzadeh, S. and S. Vaez-Zadeh, "Performance analysis of contactless electrical power transfer for Maglev," Journal of Magnetics, Vol. 17, No. 2, 115-123, Jun. 2012.
doi:10.4283/JMAG.2012.17.2.115