Vol. 27
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-12-07
A Simple Design of Multi Band Microstrip Patch Antennas Robust to Fabrication Tolerances for GSM, UMTS, LTE, and Bluetooth Applications by Using Genetic Algorithm Optimization
By
Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012
Abstract
Design of multiband antennas with low volume is of practical interest for the ever growing wireless communication industry. In this regard, the design of a small multi band microstrip patch antenna (MPA) for GSM900 (880-960 MHz), GSM1800 (1710-1880 MHz), GSM1900 (1850-1990 MHz), UMTS (1920-2170 MHz), LTE2300 (2305-2400 MHz), and Bluetooth (2400-2483.5 MHz) applications by using a genetic algorithm (GA) is proposed. The proposed GA method divides the overall patch area into different cells taking into account that cells have a small overlap area between them. This avoids optimized geometries with certain cells having only an infinitesimal connection to the rest of the patch. Therefore, the proposed method is robust for manufacturing. A shorting pin is also included for impedance matching. GA optimization combined with finite element method (FEM) is used to optimize the patch geometry, the feeding position and the shorting position. A prototype has been built showing good agreement with the simulated results. The optimized MPA has a footprint of 46 mm × 57 mm (0.138λ x 0.171λ at 900 MHz) and an air gap of 10 mm. It shows a reflection coefficient less than -10 dB at all six bands and can be useful for a base station antenna.
Citation
Jeevani Windhya Jayasinghe, Jaume Anguera, and Disala N. Uduwawala, "A Simple Design of Multi Band Microstrip Patch Antennas Robust to Fabrication Tolerances for GSM, UMTS, LTE, and Bluetooth Applications by Using Genetic Algorithm Optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705
References

1. Balanis, C. A., Modern Antenna Handbook, 1st Ed., John Wiley & Sons, Inc., 2008.
doi:10.1002/9780470294154

2. Balanis, C. A., Antenna Theory and Design, 2nd Ed., John Willey & sons, Inc., 1997.

3. Pozar, D. and D. Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antenna Arrays, Wiley-IEEE Press, 1995.

4. Wong, K. L., "Compact and Broadband Microstrip Antennas," John Wiley & Sons, Inc., 2002.

5. Anguera, J., "Fractal and broad-band techniques on miniature, multifrequency, and high-directivity microstrip patch antennas,", Ph.D. Dissertation at Universitat Politμecnica of Catalunya,Barcelona, Spain, Jul. 2003 .

6. Anguera, J., C. Puente, C. Borja, and J. Soler, "Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal-shaped radiating edge," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 309-312, 2007.
doi:10.1109/LAWP.2007.891523

7. Anguera, J., C. Puente, C. Borja, N. Delbene, and J. Soler, "Dual frequency broadband stacked microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 36-39, 2003.
doi:10.1109/LAWP.2003.811325

8. Anguera, J., G. Font, C. Puente, C. Borja, and J. Soler, "Multifrequency microstrip patch antenna using multiple stacked elements ," IEEE Microwave and Wireless Component Letters,, Vol. 13, No. 3, Mar. 2003.
doi:10.1109/LMWC.2003.810126

9. Pan, S. C. and K. L. Wong, "Dual-frequency triangular microstrip antenna with a shorting pin," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 1889-1891, 1997.
doi:10.1109/8.650213

10. Pedra, A. C. O., G. Bulla, P. Serafini, and A. A. A. de Salles, "Shorting pins application in wide-band E-shaped patch antenna," SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2009), 229-234, 2009.
doi:10.1109/IMOC.2009.5427591

11. Picher, C., J. Anguera, A. Cabedo, C. Puente, and S. Kahng, "Multiband handset antenna using slots on the ground plane considerations to facilitate the integration of the feeding transmission line," Progress In Electromagnetics Research, Vol. 7, 95-109, 2009.

12. Cabedo, A., J. Anguera, C. Picher, M. Ribo, C. Puente, and , "Multi-band handset antenna combining a PIFA, slots, and ground plane modes," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2526-2533, Sep. 2009.
doi:10.1109/TAP.2009.2027039

13. Kwak, W., S. O. Park, and J. S. Kim, "A folded planar inverted-F antenna for GSM/DCS/bluetooth Triple-band application," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 18-21, 2006.
doi:10.1109/LAWP.2005.863617

14. Bhatti, R. A., Y. S. Shin, N. Nguyen, and S. Park, "Design of novel multiband planer inverted-F antenna for mobile terminals," Proceedings of iWAT, 530-533, Chiba, Japan, 2008.

15. Zhang, X. and A. Salo, "Design of novel wideband planer inverted-F antenna for mobile application," PIERS Proceedings, 1191-1195, Beijing, China, Mar. 23-27, 2009.

16. Maci, S. and G. B. Gentili, "Dual frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, Dec. 1997.
doi:10.1109/74.646798

17. Lee, C. S., V. Nalbandian, and F. Schwering, "Planar dual-band microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 892-894, Aug. 1995.
doi:10.1109/8.402213

18. Daniel, A. E. and G. Kumar, "Tuneable dual and triple stub loaded," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1026-1039, Jul. 2000.

19. Wang, B. F. and Y. T. Lo, "Microstrip antennas for dual-frequency operation," IEEE Transactions on Antennas and Propagation, Vol. 32, 938-943, Sep. 1984.
doi:10.1109/TAP.1984.1143459

20. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for IMT-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

21. Luk, K. M., C. H. Lai, and K. F. Lee, "Wideband L-probe-fed patch antenna with dual-band operation for GSM/PCS base stations," Electron. Lett., Vol. 35, 1123-1124, Jul. 8, 1999.

22. Li, P., K. M. Luk, and K. L. Lau, "A dual-feed dual-band L-probe patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2321-2323, 2005.
doi:10.1109/TAP.2005.850761

23. Huang, Y. H., Q. Z. Liu, and S. G. Zhou, "A wideband and dual frequency three dimensional transition fed circular patch antenna for indoor base station application," Progress In Electromagnetics Research Letters, Vol. 11, 47-54, 2009.
doi:10.2528/PIERL09080207

24. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1606-1614, Oct. 1999.
doi:10.1109/8.805906

25. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, 1st Ed., John Wiley & Sons, Inc., 1999.

26. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, Aug. 7-21, 1997.

27. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "Design of broadband patch antennas using genetic algorithm optimization," 5th International Conference on Industrial and Information Systems, 60-65, 2010.
doi:10.1109/ICIINFS.2010.5578733

28. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, 2424-2435, 2004.
doi:10.1109/TAP.2004.834071

29. Jayasinghe, J. M. J. W., D. N. Uduwawala, and J. Anguera, "Design of dual band patch antennas for cellular communications by genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 1, 26-43, 2012.

30. Jayasinghe, J. M. J. W. a, D. N. Uduwawala, and , "Novel quad-band patch antenna design for wireless communications in 2.4, 5.2, 5.6 and 5.8 GHz bands using genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 4, 466-471, 2012.

31. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461

32. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128