Vol. 27
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-12-03
A Compact 90° Bent Equal Output Ports of Photonic Crystal Beam Splitter with Complete Band Gap Based on Defect Resonance Interface
By
Progress In Electromagnetics Research M, Vol. 27, 231-240, 2012
Abstract
A compact 90° bent equal output ports of photonic crystal (PC) beam splitter (BS) with complete band gap (CPBG) based on the effect of defect resonance interface (DRI) in PC waveguides is designed and analyzed. The finite-difference time-domain method is adopted to simulate the relevant structures of defect mode in a two dimensional square lattice circular dielectric rods of anisotropic PC. The device size reduction and flexibility in polarization dependence compared with the conventional PCBS can be attributed to the same resonant frequency for both transverse-magnetic and transverse-electric polarization, because the PC structures designed here have a CPBG. The merit of our proposed PCBSs with identical lights at the output ports possess the short coupling length with direct coupling (the coupling length is the same as that of the width of DRI, 3a) and the short distance without cross-talk among the output ports (only three lattice constant, 3a), thus helping the design flexibility of the PCBSs in IOCs.
Citation
Wayne Yang, and Yuan-Fong Chau, "A Compact 90° Bent Equal Output Ports of Photonic Crystal Beam Splitter with Complete Band Gap Based on Defect Resonance Interface," Progress In Electromagnetics Research M, Vol. 27, 231-240, 2012.
doi:10.2528/PIERM12102805
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, NJ, 1995.

2. Sakoda, K., Optical Properties of Photonic Crystals, Springer Press, 2001.

3. Fan, S., P. Villeneuve, and J. D. Joannopoulos, "Channel drop through localized states," Phys. Rev. Lett., Vol. 80, 960-963, 1998.
doi:10.1103/PhysRevLett.80.960

4. Banaei, H. A. and A. Rostami, "A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals," Journal of Electromagnetic Waves and Applications,, Vol. 22, No. 4, 471-482, 2008.
doi:10.1163/156939308784150263

5. Shi, Y., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402

6. Bennett, J. M., "Polarization," Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe (eds.), Vol. I, Chap. 5, McGraw-Hil, 1995.

7. Perla, S. R. and R. M. A. Azzam, "Wide-angle, high-extinctionratio, infrared polarizing beam splitters using frustrated total internal re°ection by an embedded centrosymmetric multilayer," Appl. Opt., Vol. 46, 4604-4612, 2007.
doi:10.1364/AO.46.004604

8. Zheng, J., C. Zhou, J. Feng, and B. Wang, "Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings," Opt. Lett., Vol. 33, 1554-1556, 2008.
doi:10.1364/OL.33.001554

9. Solli, D. R., C. F. McCormick, R. Y. Chiao, and J. M. Hickman, "PC polarizers and polarizing beam splitters," J. Appl. Phys., Vol. 93, 9429-9431, 2003.
doi:10.1063/1.1574174

10. Khanfar, H. K. and R. M. A. Azzam, "Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism," Appl. Opt., Vol. 48, 5121-5126, 2009.
doi:10.1364/AO.48.005121

11. Bayindir, M., E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, "Guiding, bending, and splitting of electromagnetic waves in highly confined PC wave guides," Phys. Rev. B, Vol. 63, 081107, 2001.
doi:10.1103/PhysRevB.63.081107

12. Yonekura, J., M. Ikeda, and T. Baba, "Analysis of finite 2D PCs of columns and lightwave devices using the scattering matrix method," J. Lightwave Technol., Vol. 17, 1500-1508, 1999.
doi:10.1109/50.779177

13. Liu, T., A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Multimode interference-based PC waveguide power splitter," J. Lightwave Technol., Vol. 22, 2842-2846, 2004.
doi:10.1109/JLT.2004.834479

14. Fan, S., S. G. Hohnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, "Waveguide branches in PCs," J. Opt. Soc. Amer. B, Vol. 18, 162-165, 2001.
doi:10.1364/JOSAB.18.000162

15. Chen, C. C., H. D. Chien, and P. G. Luan, "Photonic crystal beam splitter," Appl. Opt., Vol. 43, 6187-6190, 2004.
doi:10.1364/AO.43.006187

16. Li, Z. Y., B. Y. Gu, and G. Z. Yuan, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, 2574-2577, 1998.
doi:10.1103/PhysRevLett.81.2574

17. Taflove, A., Computational Electrodynamics, Artech House, Norwood, MA, 1995.

18. Tsuji, , Y., Y. Morita, and K. Hirayama, "Photonic crystal waveguide based on 2-D photonic crystal with absolute photonic band gap," IEEE Photon. Technol. Lett., Vol. 18, No. 22, 2410-2412, 2006.
doi:10.1109/LPT.2006.885295

19. Tsuji, Y., Y. Morita, and K. Hirayama, "Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap," IEEE Photon. Technol. Lett., Vol. 20, No. 22, 93-95, 2008.