Vol. 29
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-02-21
Validation of Numerical Approaches for Electromagnetic Characterization of Magnetic Resonance Radiofrequency Coils
By
Progress In Electromagnetics Research M, Vol. 29, 121-136, 2013
Abstract
Numerical methods based on solutions of Maxwell's equations are usually adopted for the electromagnetic characterization of Magnetic Resonance (MR) Radiofrequency (RF) coils. In this context, many different numerical methods can be employed, including time domain methods, e.g. the Finite-Difference Time-Domain (FDTD), and frequency domain methods, e.g. the Finite Element Methods (FEM) and the Method of Moments (MoM). We provide a quantitative comparison of performances and a detailed evaluation of advantages and limitations of the aforementioned methods in the context of RF coil design for MR applications. Specifically, we analyzed three RF coils which are representative of current geometries for clinical applications: a 1.5 T proton surface coil; a 7 T dual tuned surface coil; a 7 T proton volume coil. The numerical simulation results have been compared with measurements, with excellent agreement in almost every case. However, the three methods differ in terms of required computing resources (memory and simulation time) as well as their ability to handle a realistic phantom model. For this reason, this work could provide "a guide to select the most suitable method for each specific research and clinical applications at low and high field".
Citation
Riccardo Stara Nunzia Fontana Gianluigi Tiberi Agostino Monorchio Giuliano Manara Maria Alfonsetti Angelo Galante Assunta Vitacolonna Marcello Alecci Alessandra Retico Michela Tosetti , "Validation of Numerical Approaches for Electromagnetic Characterization of Magnetic Resonance Radiofrequency Coils," Progress In Electromagnetics Research M, Vol. 29, 121-136, 2013.
doi:10.2528/PIERM12122113
http://www.jpier.org/PIERM/pier.php?paper=12122113
References

1. Hayes, , C. E., W. A. Edelstein, J. F. Schenk, O. M. Mueller, and M. Eash, "An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T," J. Magn. Reson., Vol. 63, 622-628, 1985.

2. Tropp, J., "The theory of the birdcage resonator," J. Magn. Reson., Vol. 82, 51-62, 1989.

3. Vaughan, J. T., H. P. Hetherington, J. O. Out, J. W. Pan, and G. M. Pohost, "High frequency volume coils for NMR imaging and spectroscopy," Magn. Reson. Med., Vol. 32, 622-628, 1994.
doi:10.1002/mrm.1910320209

4. Alfonsetti, M., T. Mazza, and M. Alecci, "Optimization of multi-element transverse field radio frequency surface coils," Magn. Reson. Mater. Phy., Vol. 17, No. 53, 2006.

5. Alfonsetti, M., V. Clementi, S. Iotti, G. Placidi, R. Lodi, B. Barbiroli, A. Sotgiu, and M. Alecci, "Versatile coil design and positioning of transverse-field RF surface coils for clinical 1.5T MRI applications," MAGMA, Vol. 18, 69-75, 2005.
doi:10.1007/s10334-004-0090-4

6. Alecci, M., S. Romanzetti, J. Kaffanke, A. Celik, H. P. Wegener, and N. J. Shah, "Practical design of a 4Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain," J. Magn. Reson., Vol. 181, No. 2, 203-211, 2006.
doi:10.1016/j.jmr.2006.04.011

7. Tropp, J., "Image brightening in samples of high dielectric constant," Magn. Reson. Med., Vol. 167, 12-24, 2004.

8. Alecci, M., C. M. Collins, M. B. Smith, and P. Jezzard, "Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: Experimental and theoretical dependence on sample properties," Magnetic Resonance in Medicine, Vol. 46, No. 2, 379-385, 2001.
doi:10.1002/mrm.1201

9. Jin, J. M., "Electromagnetics in magnetic resonance imaging," IEEE Antennas and Propagation Magazine, Vol. 40, No. 6, 7-22, 1998.
doi:10.1109/74.739187

10. Collins, C. M., S. Li, and M. B. Smith, "SAR and RF field distributions in a heterogeneous human head model within a birdcage coil," Magn. Reson. Med., Vol. 40, 847-856, 1998.
doi:10.1002/mrm.1910400610

11. Chen, , J., Z. Fenga, and J. M. Jin, "Numerical simulation of SAR and B1-field inhomogeneity of shielded RF coils loaded with the human head," IEEE Trans. Biomed. Eng., Vol. 45, No. 5, 650-659, 1998.
doi:10.1109/10.668756

12. Ibrahim, T. S., R. Lee, B. A. Baertlein, A. Kangarlu, and P. M. L. Robitaille, "On the physical feasibility of achieving linear polarization at high field: A study of the birdcage coil," Proc. Int. Soc. Magn. Reson. Med., Vol. 1, 2058, 1999.

13. Ibrahim, T. S., "Ultrahigh-field MRI whole-slice and localized RF field excitations using the same RF transmit array," IEEE Transactions on Medical Imaging, Vol. 25, No. 10, 1341-1347, 2006.
doi:10.1109/TMI.2006.880666

14. Simunic, D., P. Wach, W. Renhart, and R. Stollberg, "Spatial distribution of high-frequency electromagnetic energy in human head during MRI: Numerical results and measurements," IEEE Trans. Biomed. Eng., Vol. 43, No. 1, 88-94, 1906.
doi:10.1109/10.477704

15. Singerman, R. W., T. J. Denison, H. Wen, and R. S. Balaban, "Simulation of B1 field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field," J. Magn. Reson., Vol. 125, 78-83, 1997.
doi:10.1006/jmre.1996.1073

16. Mohsin, S. A., "A simple EM model for determining the scattered magnetic resonance radiofrequency field of an implanted medical device," Progress In Electromagnetics Research M, Vol. 14, 1-14, 2010.
doi:10.2528/PIERM10043006

17. Fuijita, H., L. S. Petropoulus, M. A. Morich, S. M. Shvartsman, and R. W. Brown, "A hybrid inverse approach applied to the design of lumped-element RF coils," IEEE Trans. Biomed. Eng., Vol. 46, No. 3, 353-361, 1999.
doi:10.1109/10.748988

18. Rogovich, A., A. Monorchio, P. Nepa, G. Manara, G. Giovannetti, and L. Landini, "Design of magnetic resonance imaging (MRI) RF coils by using the method of moments," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 950-953, 2004.

19. Attardo, E. A., T. Isernia, and G. Vecchi, "Field synthesis in inhomogeneous media: Joint control of polarization, uniformity and SAR in MRI B1-field," Progress In Electromagnetics Research, Vol. 118, 355-377, 2011.
doi:10.2528/PIER11051910

20. Yau, D. and S. Crozier, "A genetic algorithm/method of moments approach to the optimization of an RF coil for MRI applications --- Theoretical considerations," Progress In Electromagnetics Research, Vol. 39, 177-192, 2003.
doi:10.2528/PIER02062602

21. Collins, C. M., "Numerical field calculations considering the human subject for engineering and safety assurance in MRI," NMR Biomed, Vol. 22, 919-926, 2009.
doi:10.1002/nbm.1251

22. Hartwig, V., N. Vanello, G. Giovannetti, D. De Marchi, M. Lombardi, L. Landini, and M. F. Santarelli, "B1+/actual flip angle and reception sensitivity mapping methods: Simulation and comparison," Magn. Reson. Imaging, Vol. 29, No. 5, 717-722, 2011.
doi:10.1016/j.mri.2011.01.004

23. Reza, S., S. Vijayakumar, M. Limkeman, F. Huang, and C. Saylor, "SAR simulation and the effect of mode coupling in a birdcage resonator," Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, Vol. 31B, No. 3, 2007.
doi:10.1002/cmr.b.20094

24. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 9, 295-319, 1995.

25. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagat., Vol. 14, 302-307, 1966.

26. Peterson, A. F., S. L. Ray, and R. Mittra, "Computational Methods for Electromagnetics," IEEE Press, 1998.

27. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorprtion of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

28. Mispelter, J. , M. Lupu, and A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines, Imperial College Press, 2006.
doi:10.1142/p438