Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-21
Thermo-Mechanical Analysis of an Improved Thermal through Silicon via (Ttsv) Structure
By
Progress In Electromagnetics Research M, Vol. 30, 51-66, 2013
Abstract
Temperature and thermal stress responses of an improved TTSV structure under the impact of hotspots are numerically analyzed in this paper. A Fin structure is added to the circular TTSV to strengthen the effect of thermo-mechanical mitigation. The nonlinear finite element method (N-FEM) is presented to obtain the coupled thermal and mechanical fields. Running time of the N-FEM algorithm is compared with that of commercial software to indicate its efficiency. The model of state-of-the-art 3D Dynamic Random Access Memory (DRAM) is adopted in our simulation. Besides the single-layer TTSV and TTSV array, the extended case of multi-layer TTSVs is also investigated. To take into consideration the nonlinear effects, the temperature dependent results for the issues of hotspot alignment and liner materials selection are provided, both of which are compared with the corresponding temperature independent results. This paper is aimed to provide some practical guidance to the design of TTSV for effective thermo-mechanical management.
Citation
Lin-Juan Huang, and Wen-Sheng Zhao, "Thermo-Mechanical Analysis of an Improved Thermal through Silicon via (Ttsv) Structure," Progress In Electromagnetics Research M, Vol. 30, 51-66, 2013.
doi:10.2528/PIERM13012207
References

1. Banerjee, K., S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration," Proc. IEEE, Vol. 89, No. 5, 602-633, 2001.
doi:10.1109/5.929647

2. Kang, U., H.-J. Chung, et al. "8 Gb 3-D DDR3 DRAM using through-silicon-via technology," IEEE J. Solid-State Circuits, Vol. 45, No. 1, 111-119, 2010.
doi:10.1109/JSSC.2009.2034408

3. Zhao, W. S., W. Y. Yin, and Y. X. Guo, "Electromagnetic compatibility-oriented study on through silicon single-walled carbon nanotube bundle via (TS-SWCNTBV) arrays," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 1, 149-157, 2012.
doi:10.1109/TEMC.2011.2167336

4. Van der Plas, G., P. Limaye, et al. "Design issues and considerations for low-cost 3-D TSV IC technology," IEEE J. Solid-State Circuits, Vol. 46, No. 1, 293-306, 2011.
doi:10.1109/JSSC.2010.2074070

5. Selvanayagam, C., X. Zhang, R. Rajoo, and D. Pinjala, "Modeling stress in silicon with TSVs and its effect on mobility," IEEE Trans. on Compon. Packag. Manufac. Technol., Vol. 1, No. 9, 1328-1335, 2011.
doi:10.1109/TCPMT.2011.2158002

6. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
doi:10.2528/PIER09091707

7. Chaibi, M., T. Fernandez, et al. "Nonlinear modeling of trapping and thermal effects on GaAs and GaN MESFET/HEMT devices," Progress In Electromagnetics Research, Vol. 124, 163-186, 2012.
doi:10.2528/PIER11111102

8. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping finite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Electromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903

9. Singh, S. G. and C. S. Tan, "Thermal mitigation using thermal through silicon via (TTSV) in 3D ICs," Int. Microsyst. Packag. Assembly Circuits Technol. (IMPACT) Conf., 182-185, 2009.

10. Lee, Y.-J. and S. K. Lim, "Co-optimization and analysis of signal, power, and thermal interconnects in 3-D ICs," IEEE Trans. on CAD of ICs and Systems, Vol. 30, No. 11, 1635-1648, 2011.
doi:10.1109/TCAD.2011.2157159

11. Hwang, L., K. L. Lin, and M. D. F. Wong, "Thermal via structural design in three-dimensional integrated circuits," Int. Symp. Quality Electron. Des. (ISQED), 103-108, 2012.
doi:10.1109/ISQED.2012.6187481

12. Thein, T. T., C. L. Law, and K. Fu, "Frequency domain dynamic thermal analysis in GaAs HBT for power amplifier application," Progress In Electromagnetics Research, Vol. 118, 71-87, 2011.
doi:10.2528/PIER11050301

13. Zhang, , J., M. O. Bloomfield, J. Q. Lu, R. J. Gutmann, and T. S. Cale, "Modeling thermal stresses in 3-D IC interwafer interconnects," IEEE Trans. on Semiconductor Manufacturing, 2006.

14. Zhang, C. B. and L. J. Li, "Characterization and design of through-silicon via arrays in three-dimensional ICs based on thermomechanical modeling," IEEE Trans. on Electron. Devices, Vol. 58, No. 2, 278-287, Feb. 2011.
doi:10.1109/TED.2010.2089987

15. Selvanayagam, C. S., J. H. Lau, et al. "Nonlinear thermal stress/strain analysis of copper filled TSV (through silicon via) and their °ip-chip microbumps," Electron. Compon. Technol. Conf. (ECTC), 1073-1081, 2008.

16. Wang, X. P., W. Y. Yin, and S. He, "Multiphysics characterization of transient electrothermomechanical responses of through-silicon vias applied with a periodic voltage pulse," IEEE Trans. on Electron. Devices, Vol. 57, No. 6, 1382-1389, 2010.
doi:10.1109/TED.2010.2045676

17. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electro-magnetics," Progress In Electromagnetics Research, Vol. 7, 57-110, 1993.

18. Zhao, W. S., W. Y. Yin, X. P. Wang, and X. L. Xu, "Frequency-and temperature-dependent modeling of coaxial through-silicon via for 3-D ICs," IEEE Trans. on Electron. Devices, Vol. 58, No. 10, 3358-3368, 2011.
doi:10.1109/TED.2011.2162848

19. Shi, Y. B., W. Y. Yin, J. F. Mao, P. G. Liu, and Q. H. Liu, "Transient electrothermal analysis of multilevel interconnects in the presence of ESD pulse using the nonlinear time-domain finite element method," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 3, 774-783, 2009.
doi:10.1109/TEMC.2009.2017026

20. Kong, F. Z., W. Y. Yin, J. F. Mao, and Q. H. Liu, "Electrothermo-mechanical characterizations of various wire bonding interconnects illuminated by an electromagnetic pulse," IEEE Trans. on Advanced Pack., Vol. 33, No. 3, 729-737, 2010.
doi:10.1109/TADVP.2010.2048902

21. Irsigler, R. and S. AG, , Available online: http://www.sematech.org/meetings/archiv es/3d/8946/pres/Irsigler.pdf.

22. Nix, F. C. and D. MacNair, "The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron," Phys. Rev.,, Vol. 60, 597-605, 1941.
doi:10.1103/PhysRev.60.597

23., http://www.sematech.org/meetings/archives/3d/8946/pres/Irsigler.pdf.

24. Zhao, W. S., X. P. Wang, and W. Y. Yin, "Electrothermal effects in high density through silicon via (TSV) arrays," Progress In Electromagnetics Research, Vol. 110, 125-145, 2010.