Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-11
A Way to Improve the Accuracy of Displacement Measurement by a Two-Probe Implementation of Microwave Interferometry
By
Progress In Electromagnetics Research M, Vol. 30, 105-116, 2013
Abstract
This paper addresses the possibility of displacement measurement by microwave interferometry at an unknown reflection coefficient with the use of as few as two probes. The case of an arbitrary interpobe distance is considered. The measurement error as a function of the interprobe distance is analyzed with the inclusion of variations of the detector currents from their theoretical values. The analysis has shown that as the interprobe distance decreases, the maximum measurement error passes through a minimum for reflection coefficients close to unity and increases monotonically for smaller reflection coefficients. Based on the results of the analysis, the interprobe distance is suggested to be one tenth of the guided operating wavelength λg. In comparison with the conventional interprobe distance of λg/8, the suggested one offers a marked reduction in the maximum measurement error for reflection coefficients close to unity, while for smaller ones this error remains much the same (for a detector current error of 3%, the maximum measurement error in percent of the operating wavelength is 2.2% and 1.0% at λg/10 as against 4.8% and 2.7% at λg/8 for a reflection coefficient of 1 and 0.9, respectively, and 2.9% at λg/10 as against 2.4% at λg/8 for a reflection coefficient of 0.1).
Citation
Aleksei V. Doronin, Nikolai B. Gorev, Inna F. Kodzhespirova, and Evgeny N. Privalov, "A Way to Improve the Accuracy of Displacement Measurement by a Two-Probe Implementation of Microwave Interferometry," Progress In Electromagnetics Research M, Vol. 30, 105-116, 2013.
doi:10.2528/PIERM13020504
References

1. Stezer, A., C. G. Diskus, K. Lubke, and H. W. Thim, "Microwave position sensor with sub millimeter accuracy," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 12, 2621-2624, 1999.
doi:10.1109/22.809015

2. Benlarbi-Delai, A., D. Matton, and Y. Leroy, "Short-range two-dimension positioning by microwave cellular telemetry," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2056-2062, 1994.
doi:10.1109/22.330119

3. Kim, S. and C. Nguyen, "A displacement measurement technique using millimeter-wave interferometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 6, 1724-1728, 2003.
doi:10.1109/TMTT.2003.812575

4. Cunha, A. and E. Caetano, "Dynamic measurements on stay cables of stay-cable bridges using an interferometry laser system," Experimental Techniques, Vol. 23, No. 3, 38-43, 1999.
doi:10.1111/j.1747-1567.1999.tb01570.x

5. Kaito, K., M. Abe, and Y. Fujino, "Development of a non-contact scanning vibration measurement system for real-scale structures," Structure and Infrastructure Engineering, Vol. 1, No. 3, 189-205, 2005.
doi:10.1080/15732470500030661

6. Mehrabi, A. B., "In-service evaluation of cable-stayed bridges, overview of available methods, and findings," Journal of Bridge Engineering, Vol. 11, No. 6, 716-724, 2006.
doi:10.1061/(ASCE)1084-0702(2006)11:6(716)

7. Lee, J. J. and M. Shinozuka, "A vision-based system for remote sensing of bridge displacement," NDT & E International, Vol. 39, No. 5, 425-431, 2006.
doi:10.1016/j.ndteint.2005.12.003

8. Gentile, C., "Application of microwave remote sensing to dynamic testing of stay-cables," Remote Sensing, Vol. 2, No. 1, 36-51, 2010.
doi:10.3390/rs2010036

9. Kim, S. and C. Nguyen, "On the development of a multifunction millimeter-wave sensor for displacement sensing and low-velocity measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 11, 2503-2512, 2004.
doi:10.1109/TMTT.2004.837153

10. Doronin, A. V., N. B. Gorev, I. F. Kodzhespirova, and E. N. Privalov, "Displacement measurement using a two-prove implementation of microwave interferometry," Progress In Electromagnetics Research C, Vol. 32, 245-258, 2012.

11. Tischer, F. J., Mikrowellen-Messtechnik, Springer-Verlag, Berlin, 1958.
doi:10.1007/978-3-642-87504-5

12. Chavez, S., Q.-S. Xiang, and L. An, "Understanding phase maps in MRI: A new cutline phase unwrapping method," IEEE Transactions on Medical Imaging, Vol. 21, No. 8, 966-977, 2002.
doi:10.1109/TMI.2002.803106

13. Hasar, U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012.

14. Silvia, M. T. and E. A. Robinson, Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1979.