Vol. 32
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-23
Study of Ionospheric Effects on Azimuth Imaging for Medium-Earth-Orbit SAR
By
Progress In Electromagnetics Research M, Vol. 32, 215-228, 2013
Abstract
The Medium-Earth-Orbit SAR(MEOSAR)is one of the potential next-generation spacebarne SAR for its excellent performance, however, due to ionospheric effects, a MEOSAR may not be able to produce data useful for science applications. So study of ionospheric effects is one of the critical techniques for the development of MEOSAR. In this paper, we present ionospheric effects on azimuth imaging for MEOSAR. First, we establish an analysis model for ionospheric effects on azimuth imaging of MEOSAR based on the system characteristics of MEOSAR and the temporal-variability of ionosphere. Then, based on the analysis model, we analyze the effects caused by the quadratic and cubic phase errors induced by temporal-variability of ionosphere on azimuth imaging. According to the results of our analysis, we conclude that both the quadratic phase error and the cubic phase error neglected for Low-Earth-Orbit SAR(LEOSAR) will deteriorate the azimuth imaging for MEOSAR and ionospheric effects become more and more serious with the increase of SAR altitude and the improvement of azimuth resolution designed.
Citation
Liang Li, and Jun Hong, "Study of Ionospheric Effects on Azimuth Imaging for Medium-Earth-Orbit SAR," Progress In Electromagnetics Research M, Vol. 32, 215-228, 2013.
doi:10.2528/PIERM13052109
References

1. Bruno, D., S. Hobbs, and G. Ottavianelli, "Geosynchronous synthetic aperture radar: Concept design, properties and possible applications," Acta Astronautica, Vol. 59, 149-156, 2006.
doi:10.1016/j.actaastro.2006.02.005

2. Yu, Z. and et. al., "Concepts, properties and imaging technologies for GEO SAR," Proceedings of SPIE, Vol. 7494, 749407/1-749407/8, 2009.

3. Edelstein, W., S. Madsen, A. Moussessian, and C. Chen, "Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits," Proceedings of SPIE, Vol. 5659, 195-203, Bellingham, USA, 2005.
doi:10.1117/12.578989

4. Huang, L. J., "Imaging algorithm for Medium-Earth-Orbit SAR,", Ph.D. Thesis, Institute of Electronics, Chinese Academy of Sciences, 2010.

5. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

6. Zheng, J. B., H. J. Song, X. Q. Shang, et al. "Doppler properties analysis of GEO spaceborne SAR," Journal of Electronics & Information Technology, Vol. 33, 810-815, 2011.
doi:10.3724/SP.J.1146.2010.00648

7. Liu, Q., W. Hong, W. X. Tan, and Y. Wu, "Efficient geosynchronous circular SAR raw data simulation of extended 3-D scenes," Progress In Electromagnetics Research, Vol. 127, 335-350, 2012.
doi:10.2528/PIER12030306

8. Bao, M., M. D. Xing, Y. Wang, and Y. C. Li, "Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation," Electronics Letters, Vol. 47, No. 18, 1043-1045, 2011.
doi:10.1049/el.2011.1322

9. Hu, C., T. Long, and Y. Tian, "An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR," Progress In Electromagnetics Research, Vol. 135, 481-513, 2013.

10. Chaudhary, K. and B. R. Vishvakarma, "Effect of ionospheric induced depolarization on satellite solar power station," Progress n Electromagnetics Research Letters, Vol. 9, 39-47, 2009.
doi:10.2528/PIERL09040406

11. Chen, J., S. Quegan, and X. Yin, "Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators," Progress In Electromagnetics Research, Vol. 114, 89-111, 2011.

12. Tsynkov, S. V., "On SAR imaging through the Earth's ionosphere," SIAM J. Imaging Sci., Vol. 2, 140-182, 2009.
doi:10.1137/080721509

13. Kim, Y. J. and J. van Zyl, "Ionospheric effects on polarimetric and nterferometric space-borne SAR," GARSS 1998, Vol. 1, 472-474, 1998.

14. Li, L. L., "Spaceborne SAR signals propagation in the ionosphere and ionosphere image by spaceborne SAR,", Ph.D. Thesis, Institute of Electronics, Chinese Academy of Sciences, 2006.

15. Bruno, D. and S. E. Hobbs, "Radar imaging from geosynchronous orbit: Temporal decorrelation aspects," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 7, 2924-2929, 2010.
doi:10.1109/TGRS.2010.2042062

16. Huang, L. J., B. Han, D. H. Hu, et al. "Medium-earth-orbit SAR imaging based on keystone transform and azimuth perturbation," IGARSS 2012, 3608-3610, Munich, 2012.

17. Li, L., J. Hong, F. Ming, et al. "An approach for ionospheric eects correction on spaceborne SAR calibration based on active radar calibrator," Journal of Electronics & Information Technology, Vol. 34, 1096-1101, 2012.

18. Yesil, A., M. Aydogdu, and A. G. Elias, "Reflection and transmission in the ionosphere considering collisions in a first approximation," Progress In Electromagnetics Research Letters, Vol. 1, 93-99, 2008.
doi:10.2528/PIERL07111303

19. Papathanassiou, K., J. S. Kim, S. Quegan, et al. "Study of ionospheric mitigation schemes and their consequences for BIOMASS product quality,", University of Sheffield, ESA/ESTEC Contract No. 22849/09/NL/JA/ef., European Space Agency, 2012.