Vol. 33
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-09-16
Low RCS Metamaterial Absorber and Extending Bandwidth Based on Electromagnetic Resonances
By
Progress In Electromagnetics Research M, Vol. 33, 31-44, 2013
Abstract
A low radar cross section (RCS) metamaterial absorber (MMA) with an enhanced bandwidth is presented both numerically and experimentally. The MMA is realized by assembling three simple square loops in a three-layer structure according to the idea of separating electric and magnetic resonances. Different from one-layer MMA, the proposed MMA can effectively couple with the electric and magnetic components of the incident wave in different positions for fixed frequency, while, for different frequencies, it can trap the input power into different dielectric layers and absorb it in the lossy substrate. Experimental results indicate that the MMA exhibits a bandwidth of absorbance above 90% which is 4.25 times as that of one-layer MMA, and 10 dB RCS reduction is achieved over the range of 4.77-5.06 GHz. Moreover, the cell dimensions and total thickness of the MMA are only 0.17λ and 0.015λ, respectively. The low RCS properties of the MMA are insensitive to both polarization and incident angles.
Citation
Huanhuan Yang Xiang-Yu Cao Jun Gao Wenqiang Li Zidong Yuan Kai Shang , "Low RCS Metamaterial Absorber and Extending Bandwidth Based on Electromagnetic Resonances," Progress In Electromagnetics Research M, Vol. 33, 31-44, 2013.
doi:10.2528/PIERM13080104
http://www.jpier.org/PIERM/pier.php?paper=13080104
References

1. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag., Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632

3. Chambers, B. and A. Tennant, "Optimised design of Jaumann radar absorbing materials using a genetic algorithm," IEE Proc. - Radar, Sonar Navig., Vol. 43, No. 1, 23-30, 1996.
doi:10.1049/ip-rsn:19960316

4. Reinert, J., J. Psilopoulos, J. Grubert, and A. Jacob, "On the potential of graded-chiral dallenbach absorbers," Microwave and Optical Technology Letters, Vol. 30, No. 4, 254-257, 2001.
doi:10.1002/mop.1283

5. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

6. Hu, T., et al., "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.

7. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

8. Dayal, G. and S. A. Ramakrishna, "Design of highly absorbing metamaterials for infrared frequencies," Optics Express, Vol. 20, 17503-17508, 2012.
doi:10.1364/OE.20.017503

9. Jiang, Z. H., et al., "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603

10. Wang, J. Q., et al., "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.
doi:10.1364/OE.20.014871

11. Hao, J., et al., "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, Vol. 96, No. 25, 251104, 2010.
doi:10.1063/1.3442904

12. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

13. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

14. Costa, F., et al., "A circuit-based model for the interpretation of perfect metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923

15. Hu, T., et al., "Highly flexible wide angle of incidence terhertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 2411031-2411034, 20085.

16. Luukkonen , O., et al., "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601

17. Landy, N. I., et al., "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, Vol. 79, 125104, 2009.
doi:10.1103/PhysRevB.79.125104

18. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization intsensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

19. Grant, J., et al., "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524

20. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

21. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 191-201, 2012.

22. Lee, J., Y. Yoon, and S. Lim, "Ultra-thin polarization independent absorber using hexagonal interdigital metamaterial," ETRI Journal, Vol. 34, No. 1, 126-129, 2012.
doi:10.4218/etrij.12.0211.0081

23. Hu, T., et al., "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 43, No. 22, 2251021-2251025, 2010.

24. Ma, Y., et al., "A terahertz polarization insensitive dual band metamaterial absorber," Optics Letters, Vol. 36, No. 6, 945-947, 2011.
doi:10.1364/OL.36.000945

25. Furkan, D., K. Muharrem, U. Emin, and S. Cumali, "Dual-band polarization independent metamaterial absorber based on omega resonator and octa-starstrip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.

26. Li, H., et al., "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 0149091-0149098, 2011.

27. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, No. 6, 0637021-0637025, 2011.

28. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

29. Shen, X., et al., "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Applied Physics Letters, Vol. 101, No. 15, 1541021-1541024, 2012.
doi:10.1063/1.4757879

30. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802

31. Zhu, W., et al., "Configurable metamaterial absorber with pseudo wideband spectrum," Optics Express, Vol. 20, No. 6, 6616-6621, 2012.
doi:10.1364/OE.20.006616

32. Shi, J. H., et al., "Tunable symmetric and asym-metric resonances in an asymmetrical splitring metamaterial," Journal of Applied Physics, Vol. 112, No. 7, 0735221-0735225, 2012.

33. Luo, H., Y. Z. Cheng, and R. Z. Gong, "Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches," European Physical Journal B, Vol. 81, 387-392, 2011.

34. Luo, H., T. Wang, R. Gong, Y. Nie, and X. Wang, "Extending the bandwidth of electric ring resonator metamaterial absorber," Chinese Phys. Lett., Vol. 28, No. 3, 034204, 2011.
doi:10.1088/0256-307X/28/3/034204

35. Dimitriadis, A. I., et al., "A polarization-/angle-insensitive, bandwidth-optimized, metamaterial absorber in the microwave regime," Appl. Phys. A - Mater., Vol. 109, No. 4, 1065-1070, 2012.
doi:10.1007/s00339-012-7385-5

36. Ye, Y. Q., Y. Jin, and S. L. He, "Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime," Physics Optics, Vol. 11, 1-6, 2009.

37. Ding, F., et al., "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1063/1.3692178

38. Bao, S., C. R. Luo, Y. P. Zhang, and X. P. Zhao, "Broadband metamaterial absorber based on dendritic structure," Acta Phys. Sin., Vol. 59, No. 5, 318701-318705, 2010.

39. Sun, J., et al., "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

40. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105

41. Lee, J. Y. and S. J. Lim, "Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770

42. Culhaoglu, A. E., et al., "Mono- and bistatic scattering reduction by a metamaterial low reflection coating," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 462-466, 2013.
doi:10.1109/TAP.2012.2220095