Vol. 33
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-24
Exactly Calculable Field Components of a Horizontal Electric Dipole in Boundary Between Isotropic and One-Dimensionally Anisotropic Media
By
Progress In Electromagnetics Research M, Vol. 33, 211-222, 2013
Abstract
In this paper, the integrated formulas for the electromagnetic field in the planar boundary between isotropic and onedimensionally anisotropic media due to a horizontal electric dipole situated on the interface are treated in detail, and the calculable field components are given in terms of series that involve confluent hypergeometric functions, namely, the Fresnel and exponential integrals, and the expressions are more complex than the isotropic case. The exact expressions and simplified formulas can be easily reduced to the corresponding isotropic case. The results are useful to study the propagation of the electromagnetic waves on the boundary of one-dimensionally anisotropic earth or sediments.
Citation
Guo Hua Lin Ye-Rong Zhang Kai Li , "Exactly Calculable Field Components of a Horizontal Electric Dipole in Boundary Between Isotropic and One-Dimensionally Anisotropic Media," Progress In Electromagnetics Research M, Vol. 33, 211-222, 2013.
doi:10.2528/PIERM13091309
http://www.jpier.org/PIERM/pier.php?paper=13091309
References

1. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 81, 1135-1153, 1926.
doi:10.1002/andp.19263862516

2. Ba~nos, A., Dipole Radiation in the Presence of a Conducting Half-space, Pergamon Press, Oxford, 1966.

3. Wait, J. R., Electromagnetic Wave in Stratified Media, 2nd Ed., Pergamon Press, New York, 1970.

4. King, R. W. P., "Electromagnetic surface waves: New formulas and applications," IEEE Trans. Antennas Propag., Vol. 33, 1204-1212, 1985.
doi:10.1109/TAP.1985.1143504

5. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing , Springer-Verlag, New York, 1992.

6. Mei, J. P. and K. Li, "Electromagnetic field from a horizontal electric dipole on the surface of a high lossy dielectric coated with a uniaxial layer," Progress In Electromagnetics Research, Vol. 73, 71-91, 2007.
doi:10.2528/PIER07032604

7. Zhu, X. Q. and W. Y. Pan, "Electromagnetic field of a vertical dipole on a non-perfect conductor coated with a negative-index dipole on a non-perfect conductor coated with a negative-index medium ," 8th International Symposium on Antennas, Propagation and EM Theory , 630-633, 2008.

8. Xu, Y. H., W. Ren, L. Liu, and K. Li, "Electromagnetic field of a horizontal electric dipole in the presence of a four-layered region," Progress In Electromagnetics Research, Vol. 81, 371-391, 2008.
doi:10.2528/PIER08012303

9. Lu, Y. L., Y. L. Wang, Y. H. Xu, and K. Li, "Electromagnetic ¯eld of a horizontal electric dipole buried in a four-layered region ," Progress In Electromagnetics Research B, Vol. 16, 247-275, 2009.
doi:10.2528/PIERB09061103

10. Li, K., Electromagnetic Fields in Stratified Media, Zhejiang University Press, Hangzhou and Springer-Verlag, Berlin Heidelberg, 2009.
doi:10.1007/978-3-540-95964-9

11. Edwards, R. N., D. C. Nobes, and E. Gomez-Trevino, "Offshore electrical exploration of sedimentary basins: The effects of anisotropy in horizontally isotropic, layered media," Geophys., Vol. 49, 566, 1984.
doi:10.1190/1.1441691

12. Parkhomenko, E. I., "Electrical Properties of Rocks,", 1967.

13. Li, K., Y. L. Lu, and M. Li, "Approximate formulas for lateral electromagnetic pulses from a horizontal electric dipole on the surface of one-dimensionally anisotropic medium ," IEEE Trans.Antennas and Propag., Vol. 53, 933-937, 2005.
doi:10.1109/TAP.2004.842604

14. Pan, W. Y., "Surface-wave propagation along the boundary between sea water and one-dimensionally anisotropic rock ," Appl. Phys., Vol. 58, 3963-3974, 1985.
doi:10.1063/1.335571

15. Margetis, D. and T. T. Wu, "Exactly calculable field components of electric dipoles in planar boundary," Journal of Mathematical physics, Vol. 42, 713-745, 2001.
doi:10.1063/1.1330731

16. Van der Pol, B., "On discontinuous electromagnetic waves and occurrence of a surface wave," IEEE Trans. Antennas Propag., Vol. 4, 288-293, 1956.

17. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, New York, 1995.

18. Erdelyi, A., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.