1. Vigier, J. P., "Evidence for nonzero mass photons associated with a vacuum-induced dissipative red-shift mechanism," IEEE Transactions on Plasma Science, Vol. 18, No. 1, 64-72, 1990.
2. Tu, L., J. Luo, and G. T. Gillies, "The mass of the photon," Rep. Prog. Phys., Vol. 68, 77, 2005.
3. Kar, G., M. Sinha, and S. Roy, "Maxwell equations, nonzero photon mass, and conformal metric fluctuation," Int. J. Theor. Phys., Vol. 32, No. 4, 593-607, 1993.
4. Bass, L. and E. Schodinger, "Must the photon mass be zero?," Proc. Roy. Soc. London: Series A, Vol. 232, No. 1188, 1-6, 1955.
5. Dvogeglazov, V. V. and J. L. Quintanar Gonzalez, "A note on the Lorentz transformations for the photon," Found. Phys. Lett., Vol. 19, 195-200, 2011.
6. Proca, A., "Sur la theorie ondulatoire des electrons positifs et negatifs," J. Phys. Radium, Vol. 7, 347-353, 1936.
7. Dvogeglazov, V. V., "The modified Bargmann-Wigner formalism for higher spin fields and relativistic quantum mechanics," Int. J. Mod. Phys. Conf. Ser., Vol. 3, 121-132, 2011.
8. Arbab, A. I., "The analogy between matter and electromagnetic waves," EPL, Vol. 94, 50005, 2011.
9. Arbab, A. I., "Derivation of Dirac, Klein-Gordon, Schrodinger, diffusion and quantum heat transport equations from a universal quantum wave equation," EPL, Vol. 92, 40001, 2010.
10. Armour, R. S., "Spin-1/2 Maxwell field," Found. Phys., Vol. 34, 815-842, 2004.
11. Dvoeglazov, V. V. and J. K. R. Murty Eds., "Fundamental physics: Contemporary thinking," Special Issue of ICFAI Journal of Physics, Vol. 2, No. 2-3, 1-196, 2009.
12. Arbab, A. I., "Complex Maxwell's equations," Chinese Phys. B, Vol. 22, 030301, 2013.
13. Silberstein, L., "Elektromagnetische Grundgleichungen in bivectorieller Behandlung," Ann. d. Phys., Vol. 22, 579, 1907.
14. Majorana, E., "Teoria relativistica di particelle con momento intrinseco arbitrario," Nuovo Cimento, Vol. 9, No. 10, 335-344, 1932.
15. Mignani, R., E. Recami, and M. Bxldo, "About a Dirac-like equation for the photon, according to Ettore Majorana," Nuovo Cimento, Vol. 11, No. 12, 568-572, 1974.
16. Singh, P. and N. Dadhich, "The field equation from Newton's law of motion and absence of magnetic monopole," Int. J. Mod. Phys. A, Vol. 16, 1237-1247, 2001.
17. Arbab, A. I., "Complex Maxwell's equation," Chinese Phys. B, Vol. 22, No. 3, 030301, 2013.
18. Arbab, A. I. and Z. A. Satti, "The generalized Maxwell equations and the prediction of electroscalar wave," Progress in Physics, Vol. 2, 8, 2009.
19. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.
20. Dirac, P. A. M., "The quantum theory of the electron," Proc. Roy. Soc. London: Series A, Vol. 117, No. 778, 610-624, 1928.
21. Chereshko, V. P., et al., "Enhancement of the longitudinal magnetic moment of the exciton due to its motion," International Journal of Modern Physics B, Vol. 21, No. 08-09, 1350-1357, 2009.
22. Gingras, M. J. P., "Observing monopoles in a magnetic analog of ice," Science, Vol. 326, No. 5951, 375-376, 2007.
23. Cooper, L. N., "Bound electron pairs in a degenerate fermi gas," Phys. Rev., Vol. 104, 1189-1190, 1956.
24. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175-1204, 1957.
25. Dirac, P. A. M., "Quantised singularities in the electromagnetic field," Proc. Roy. Soc. London: Series A, Vol. 133, No. 821, 60-72, 1931.
26. Graneau, P., "Longitudinal magnet forces?," J. Appl. Phys., Vol. 55, No. 6, 2598-2600, 1984.