Vol. 36

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-06-11

A Novel Approach to Design of Microstrip UWB Bandpass Filter Using Modified Genetic Algorithm

By Huaxia Peng, Junding Zhao, Hao Zhang, Minxian Du, Yufeng Luo, Xin Wang, and Wenhai Wang
Progress In Electromagnetics Research M, Vol. 36, 169-175, 2014
doi:10.2528/PIERM14050402

Abstract

A novel approach to design microstrip ultra-wideband (UWB) bandpass filter (BPF) using modified genetic algorithm (MGA) is proposed in this paper. To achieve high efficiency and accuracy, conventional GA is modified. By improving the fitness evaluation, selection, crossover, and mutation, the two possible drawbacks of conventional GA, i.e., slow rate of convergence and local-best solution, are overcome. The modified genetic algorithm is then applied to simultaneously search for the appropriate circuit topology and the corresponding electrical parameters with UWB characteristic. To demonstrate the effectiveness of the novel approach, a new microstrip UWB BPF is designed and fabricated. Measurement results agree well with the design index and full-wave EM simulated results.

Citation


Huaxia Peng, Junding Zhao, Hao Zhang, Minxian Du, Yufeng Luo, Xin Wang, and Wenhai Wang, "A Novel Approach to Design of Microstrip UWB Bandpass Filter Using Modified Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 36, 169-175, 2014.
doi:10.2528/PIERM14050402
http://www.jpier.org/PIERM/pier.php?paper=14050402

References


    1. FCC, Revision of Part 15 of the commission's rules regarding ultra-wide-band transmission system, Tech. Rep., ET-Docket, 98-153, 2002.

    2. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
    doi:10.1109/LMWC.2005.859011

    3. Qiang, L., Y.-J. Zhao, Q. Sun, W. Zhao, and B. Liu, "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
    doi:10.2528/PIERC09112102

    4. Packiaraj, D., K. J. Vinoy, and A. T. Kalghatgi, "Analysis and design of two layered ultra wide band filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1235-1243, 2009.

    5. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 12, 844-846, 2005.
    doi:10.1109/LMWC.2005.860016

    6. Shobeyri, M. and M. H. Vadjed-Samiei, "Compact ultra-wideband bandpass filter with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 4, 25-31, 2008.
    doi:10.2528/PIERL08050205

    7. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
    doi:10.2528/PIERL08020902

    8. Comez-Garcia, R. and J. I. Alonso, "Systematic method for the exact synthesis of ultra-wideband filtering responses using high-pass and low-pass sections," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3751-3764, 2006.
    doi:10.1109/TMTT.2006.882883

    9. Hsu, M.-H. and J.-F. Huang, "Annealing algorithm applied in optimum design of 2.4 GHz and 5.2 GHz dual-wideband microstrip line filters," IEICE Trans. Electronics., Vol. E88C, No. 1, 47-56, 2005.
    doi:10.1093/ietele/E88-C.1.47

    10. Bandler, J.-W., R.-M. Biernacki, S.-H. Chen, D.-G. Swanson, and S. Ye, "Microstrip filter design using direct EM field simulation," IEEE Trans. Microw. Theory Tech., Vol. 42, 1353-1359, 1994.
    doi:10.1109/22.299729

    11. Sanada, H., H. Ito, M. Takezawa, and K. Watanabe, "Design of transmission line filters and matching circuits using genetic algorithms," IEE J. Trans. Electrical and Electronic Engineering, Vol. 2, 588-595, 2007.
    doi:10.1002/tee.20213

    12. Nishino, T. and T. Itoh, "Evolutionary generation of microwave line segment circuits by genetic algorithms," IEEE Trans. Microw. Theory Tech., Vol. 50, 2048-2055, 2002.
    doi:10.1109/TMTT.2002.802314

    13. Hsu, M.-H. and J.-F. Huang, "Annealing algorithm applied in optimum design of 2.4 GHz and 5.2 GHz dual-wideband microstrip line filters," IEICE Trans. Electronics., Vol. E88C, 47-56, 2009.

    14. Tsai, L.-C. and C.-W. Hsue, "Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transforms technique," IEEE Trans. Microw. Theory Tech.,, Vol. 52, No. 4, 1111-1117, Apr. 2004.
    doi:10.1109/TMTT.2004.825680

    15. Nicholson, G.-L. and M.-J. Lancaster, "Coupling matrix synthesis of cross coupled microwave filters using a hybrid optimisation algorithm," IET Trans. Microw. Antennas Propag., Vol. 3, 950-958, 2008.

    16. Wang, H., X. Tang, Y. Liu, and Y. Cao, "Analysis and design of ultra-wideband power divider by micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1341-1349, 2012.
    doi:10.1080/09205071.2012.699405

    17. Pozar, D. M., Microwave Engineering, Vol. 3rd, 412-415, Wiley, New York, USA, 2005.

    18. Wu, X., Hu., Q. X. Chu, X. K. Tian, and O. Y. Xiao, "Quintuple-mode UWB bandpass filter with sharp roll-off and super-wide upper stopband," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 12, 661-663, 2011.
    doi:10.1109/LMWC.2011.2170672

    19. Peng, H., Y. Luo, and J. Zhao, "Compact microstrip UWB bandpass filter with two band-notches for UWB applications," Progress In Electromagnetics Research Letters, Vol. 45, 25-30, 2014.
    doi:10.2528/PIERL14011504