Vol. 38
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-26
Absorption Coefficient in a Mqw Intersubband Photodetector with Non-Uniform Doping Density & Layer Distribution
By
Progress In Electromagnetics Research M, Vol. 38, 193-201, 2014
Abstract
Selective wavelength tuning of multiple quantum well based infrared photodetector is achieved by nonuniform doping distribution as well as dimensional variation in the structure. Result is obtained from the computation of the intersubband transition energy through self-consistent solution of the Poisson's and Schrödinger equations with appropriate boundary conditions. Absorption coefficient is estimated in presence of external electric field applied along the direction of confinement. Suitable choice of structural parameters is required to tailor the peak position of absorption spectra for application in the infrared range as optical receiver.
Citation
Kasturi Mukherjee, and Nikhil Ranjan Das, "Absorption Coefficient in a Mqw Intersubband Photodetector with Non-Uniform Doping Density & Layer Distribution," Progress In Electromagnetics Research M, Vol. 38, 193-201, 2014.
doi:10.2528/PIERM14081903
References

1. Manasreh, M. O., Semiconductor Quantum Wells and Superlattices for Long-wavelength Infrared Detectors, Artech House, Boston, MA, 1993.

2. Davies, J. H., The Physics of Low-dimensional Semiconductors: An Introduction, Cambridge University Press, Cambridge , 1998.

3. Basu, P. K., Theory of Optical Processes in Semiconductors: Bulk and Microstructures, Clarendon Press, 2003.
doi:10.1093/acprof:oso/9780198526209.001.0001

4. Levine, B. F., "Quantum-well infrared photodetectors," Journal of Applied Physics, Vol. 74, No. 8, R1, 1993.
doi:10.1063/1.354252

5. Cen, L. B., B. Shen, Z. X. Qin, and G. Y. Zhang, "Near-infrared two-color intersubband transitions in AlN /GaN coupled double quantum wells," Journal of Applied Physics, Vol. 105, No. 5, 053106, 2009.
doi:10.1063/1.3091280

6. Jdidi, A., N. Sfina, S. A. Nassrallah, M. Said, and J. L. Lazzari, "A multi-color quantum well photodetector for mid- and long-wavelength infrared detection," Semiconductor Science & Technology, Vol. 26, No. 12, 125019, 2011.
doi:10.1088/0268-1242/26/12/125019

7. Fauci, M. A., R. Breiter, W. Cabanski, W. Fick, R. Koch, J. Zeigler, and S. D. Gunapala, "Medical infrared imaging --- Differentiating facts from fiction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence," Infrared Physics & Technology, Vol. 42, No. 3-5, 337-344, 2001.
doi:10.1016/S1350-4495(01)00093-7

8. Eker, S. U., M. Kaldirim, Y. Arslan, and C. Besikci, "Large-format voltage-tunable dual-band quantum-well infrared photodetector focal plane array for third-generation thermal imagers," IEEE Electron Device Letters, Vol. 29, No. 10, 1121-1123, 2008.
doi:10.1109/LED.2008.2002538

9. Zhou, T., R. Zhang, X. G. Guo, and Z. Y. Tan, "Terahertz imaging with quantum well photodetectors," IEEE Photonics Technology Letters, Vol. 24, No. 13, 1109-1111, 2012.
doi:10.1109/LPT.2012.2196033

10. Gunapala, S. D., B. F. Levine, L. Pfeiffer, and K. West, "Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias," Journal of Applied Physics, Vol. 69, No. 9, 6517-6520, 1991.
doi:10.1063/1.348861

11. Yang, Y., H. C. Liu, W. Z. Shen, N. Li, W. Lu, Z. R. Wasilewski, and M. Buchanan, "Optimal doping density for quantum-well infrared photodetector performance," IEEE Journal of Quantum Electronics, Vol. 45, No. 6, 623-628, 2009.
doi:10.1109/JQE.2009.2013119

12. Steele, A. G., H. C. Liu, M. Buchanan, and Z. R. Wasilewski, "Importance of the upper state position in the performance of quantum well intersubband infrared detectors," Applied Physics Letters, Vol. 59, No. 27, 3625-3627, 1991.
doi:10.1063/1.106379

13. Steele, A. G., H. C. Liu, M. Buchanan, and Z. R. Wasilewski, "Influence of the number of wells in the performance of multiple quantum well intersubband infrared detectors," Journal of Applied Physics, Vol. 72, No. 3, 1062-1064, 1992.
doi:10.1063/1.351833

14. Liu, H. C., G. C. Aers, M. Buchanan, Z. R. Wasilewski, and D. Landheer, "Intersubband photocurrent from the quantum well of an asymmetrical double-barrier structure," Journal of Applied Physics, Vol. 70, No. 2, 935-940, 1991.
doi:10.1063/1.349602

15. Ting, D. Z.-Y., C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, "A high-performance long-wavelength superlattice complementary barrier infrared detector," Applied Physics Letters, Vol. 95, No. 2, 023508, 2009.
doi:10.1063/1.3177333

16. Machhadani, H., Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F. H. Julien, "Terahertz intersubband absorption in GaN/AlGaN step quantum wells," Applied Physics Letters, Vol. 97, No. 19, 191101, 2010.
doi:10.1063/1.3515423

17. Manasreh, O., Semiconductor Heterojunctions and Nanostructures, McGraw-Hill, New York, 2005.