Vol. 39
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-25
Multimode Analysis and Pic Simulation of a Metal PBG Cavity Gyrotron Oscillator
By
Progress In Electromagnetics Research M, Vol. 39, 11-18, 2014
Abstract
This paper is devoted to the study of beam-wave interaction behavior of a 35 GHz photonic band gap cavity (PBGC) gyrotron operating in a higher order TE341 mode. For the present gyrotron, PBGC is used instead of conventional tapered cylindrical cavity due to its promising feature of the mode selectivity. In order to observe the beam-wave interaction behavior, multimode theory has been used for the PBG cavity operating at the fundamental harmonic mode. Multimode theory provides the performance of a gyrotron in the presence of all competing modes. Results obtained from the analysis have been validated using a commercially available 3D PIC code. The energy and phase variations of electrons demonstrate the bunching mechanism as well as energy transfer phenomena. RF power output obtained from the analysis as well as PIC simulation is compared and is found in close agreement within 12%. More than 45 kW of stable RF power output is achieved in TE341 mode with ~17% efficiency. The existence of competing modes has been considerably reduced, and the single mode operation of PBGC gyrotron has been achieved.
Citation
Ashutosh Singh Pradip Kumar Jain , "Multimode Analysis and Pic Simulation of a Metal PBG Cavity Gyrotron Oscillator," Progress In Electromagnetics Research M, Vol. 39, 11-18, 2014.
doi:10.2528/PIERM14082103
http://www.jpier.org/PIERM/pier.php?paper=14082103
References

1. Kartikeyan, M. V., E. Borie, and M. K. Thumm, Gyrotrons: High Power Microwave and Millimeter Wave Technology, Springer, Germany, 2004.

2. Rzesnicki, T., B. Piosczyk, S. Kern, S. Illy, J. Jianbo, A. Samartsev, A. Schlaich, and M. Thumm, "2.2-MW record power of the 170-GHz European preprototype coaxial-cavity Gyrotron for ITER," IEEE Transactions on Plasma Science, Vol. 38, No. 6, 1141-1149, 2010.
doi:10.1109/TPS.2010.2040842

3. Thumm, M., "State-of-the-art of high power gyro-devices and free electron masers, update 2011,", Forschungszentrum Karlsruhe, Germany, Scientific Reports FZKA 7467, 2012.

4. Hornstein, M. K., V. S. Bajaj, R. G. Griffin, and R. J. Temkin, "Continuous wave operation of a 460-GHz second harmonic gyrotron oscillator," IEEE Trans. Plasma Science, Vol. 34, 524-533, 2006.
doi:10.1109/TPS.2006.875769

5. Kreischer, K. E., R. J. Temkin, H. R. Fetterman, and W. J. Mulligan, "Multimode oscillation and mode competition in high-frequency gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 32, 481-490, 1984.
doi:10.1109/TMTT.1984.1132711

6. Liu, P. K. and E. Borie, "Mode competition and self-consistent simulation of a second harmonic gyrotron oscillator," Int. J. Infrared Millimeter Waves, Vol. 21, No. 6, 855882, 2000.

7. Sirigiri, J. R., K. E. Kreischer, J. Macuhzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Photonic band gap resonator Gyrotron," Phys. Rev. Lett., Vol. 86, 5628-5631, 2001.
doi:10.1103/PhysRevLett.86.5628

8. Jang, K.-H., S.-G. Jeon, J.-I. Kim, J.-H. Won, J.-K. So, S.-H. Bak, A. Srivastava, S.-S. Jung, and G.-S. Park, "High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron," Appl. Phys. Lett., Vol. 93, 211104, 2008.
doi:10.1063/1.3037026

9. Liu, G., X. Chen, and C. Tang, "Design of a second cyclotron harmonic gyrotron oscillator with photonic band-gap cavity," J. Phys. D: Appl. Phys., Vol. 44, 295102-7, 2011.

10. Smirnova, E. I., A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure," Phys. Review Lett., Vol. 95, 074801, 2005.
doi:10.1103/PhysRevLett.95.074801

11. Gao, X., Z. Yang, Y. Xu, L. Qi, D. Li, Z. Shi, F. Lan, and Z. Liang, "Dispersion characteristic of a slow wave structure with metal photonic band gap cells," Nuclear Instruments and Methods in Physics Research A, Vol. 592, 292-296, 2008.
doi:10.1016/j.nima.2008.04.059

12. Nanni, E. A., M. A. Shapiro, and R. J. Temkin, "A 250GHz photonic band gap gyrotron traveling wave amplifier," IEEE Thirteenth International Vacuum Electronics Conference (IVEC), 413-414, Monterey, CA, 2012.

13. Singh, A. and P. K. Jain, "Eigenmode analysis of metal photonic band gap cavity for Gyrotron operating in higher order mode," PIERS Proceedings, 1734-1738, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

14. Fliflet, A. W., R. C. Lee, S. H. Gold, W. M. Manheimer, and E. Ott, "Time-dependent multimode simulation of gyrotron oscillators," Phys. Rev. A, Vol. 43, No. 11, 6166-6176, Jun. 1991.
doi:10.1103/PhysRevA.43.6166

15. Danly, B. G. and R. J. Temkin, "Generalized nonlinear harmonic gyrotron theory," Physics of Fluids, Vol. 29, 561-567, 1986.
doi:10.1063/1.865446