Vol. 39

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-11-14

Along-Track Motion Compensation for Strip-Map SAR Based on Resampling

By Hui Ma, Ming Bai, Bin Liang, and Jungang Miao
Progress In Electromagnetics Research M, Vol. 39, 181-191, 2014
doi:10.2528/PIERM14091804

Abstract

The airborne or vehicle-based SARs are very vulnerable to the influences of airflows or road conditions so as to deviate from the predicted trajectory, which undermines the uniformity of the azimuth sampling. As a result, the SAR image quality can get impaired in varying degrees. Since the SAR systems are sensible to the track deviation, the motion compensation (MOCO) algorithms are always applied as pre-processing of SAR raw data. In this paper, mainly with regard to the motion error caused by the forward velocity variation, a `resampling MOCO' algorithm is proposed as an auxiliary of the widely used bulk MOCO. The simulation result has verified that the performance of the fundamental bulk MOCO algorithm is greatly improved utilizing the proposed method.

Citation


Hui Ma, Ming Bai, Bin Liang, and Jungang Miao, "Along-Track Motion Compensation for Strip-Map SAR Based on Resampling," Progress In Electromagnetics Research M, Vol. 39, 181-191, 2014.
doi:10.2528/PIERM14091804
http://www.jpier.org/PIERM/pier.php?paper=14091804

References


    1. Cumming, I. G., et al., Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, 2004.

    2. Fornaro, G., G. Franceschetti, and S. Perna, "Motion compensation errors: Effects on the accuracy of airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1338-1352, 2005.
    doi:10.1109/TAES.2005.1561888

    3. Kirk, Jr., J. C., "Motion compensation for synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 3, 338-348, 1975.
    doi:10.1109/TAES.1975.308083

    4. Franceschetti, G., et al., "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, 2323-2334, 2006.
    doi:10.1109/TGRS.2006.873206

    5. Buckreuss, S., "Motion errors in an airborne synthetic aperture radar system," European Transactions on Telecommunications, Vol. 2, No. 6, 655-664, 1991.
    doi:10.1002/ett.4460020609

    6. Wu, H. and T. Zwick, "Micro-air-vehicle-borne near-range SAR with motion compensation," Progress In Electromagnetics Research, Vol. 145, 11-18, 2014.

    7. Wu, H. and T. Zwick, "Octave division motion compensation algorithm for near-range wide-beam SAR applications," Progress In Electromagnetics Research, Vol. 144, 115-122, 2014.
    doi:10.2528/PIER13110802

    8. Long, T., et al., "A DBS Doppler centroid estimation algorithm based on entropy minimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3703-3712, 2011.
    doi:10.1109/TGRS.2011.2142316

    9. Zhao, Y., et al., "A method of Doppler frequency rate estimation for millimeter-wave missile-borne SAR," 2012 IEEE 5th Global Symposium on Millimeter Waves (GSMM), 604-607, 2012.
    doi:10.1109/GSMM.2012.6314411

    10. Li, Y., et al., "A robust motion error estimation method based on raw data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2780-2790, 2012.
    doi:10.1109/TGRS.2011.2175737

    11. Wei, S.-J. and X.-L. Zhang, "Sparse autofocus recovery for under-sampled linear array SAR 3-D imaging," Progress In Electromagnetics Research, Vol. 140, 43-62, 2013.
    doi:10.2528/PIER13020614

    12. Moreira, J. R., "A new method of aircraft motion error extraction from radar raw data for real time motion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, 620, 1990.
    doi:10.1109/TGRS.1990.572967

    13. Zhang, L., et al., "A robust motion compensation approach for UAV SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, 3202-3218, 2012.
    doi:10.1109/TGRS.2011.2180392

    14. De Macedo, K. A. C., R. Scheiber, and A. Moreira, "An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3151-3162, 2008.
    doi:10.1109/TGRS.2008.924004

    15. Xing, M., et al., "Motion compensation for UAV SAR based on raw radar data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2870-2883, 2009.
    doi:10.1109/TGRS.2009.2015657

    16. Wahl, D., et al., "Phase gradient autofocus-a robust tool for high resolution SAR phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
    doi:10.1109/7.303752

    17. Isernia, T., et al., "Synthetic aperture radar imaging from phase-corrupted data," IEE Proceedings — Radar, Sonar and Navigation, Vol. 143, No. 4, 268-274, 1996.
    doi:10.1049/ip-rsn:19960458

    18. Liu, B. and W. Chang, "Range alignment and motion compensation for missile-borne frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013.
    doi:10.2528/PIER12110809

    19. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, 1994.
    doi:10.1109/36.312891

    20. Rodriguez-Cassola, M., et al., "Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2949-2966, 2011.
    doi:10.1109/TAES.2011.6034676

    21. Prats, P., et al., "Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 3, 349-353, 2007.
    doi:10.1109/LGRS.2007.895712

    22. Zamparelli, V., S. Perna, and G. Fornaro, "An improved topography and aperture dependent motion compensation algorithm," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5805-5808, 2012.
    doi:10.1109/IGARSS.2012.6352290

    23. De Macedo, K. A. C. and R. Scheiber, "Precise topography- and aperture-dependent motion compensation for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 172-176, 2005.
    doi:10.1109/LGRS.2004.842465

    24. Sun, G., et al., "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
    doi:10.1109/TGRS.2010.2102040

    25. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

    26. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground movingtarget imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
    doi:10.1109/LGRS.2006.882147

    27. Franceschitti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, 1999.

    28. Fornaro, G., "Trajectory deviations in airborne SAR: Analysis and compensation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 997-1009, 1999.
    doi:10.1109/7.784069

    29. Tsunoda, S. I., et al., "Lynx: A high-resolution synthetic aperture radar," International Society for Optics and Photonics, AeroSense’99, 1999.