Vol. 39

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Investigation of a Conductivity Logging Tool Based on Single Coil Impedance Measurement Using FDTD Method

By Shiwei Sheng, Kang Li, Fanmin Kong, and Bin Wang
Progress In Electromagnetics Research M, Vol. 39, 171-180, 2014


Eddy current test has been widely used in many fields because of its simplicity and robustness. In this paper, numerical simulations based on the finite-difference time-domain method were carried out to validate if the eddy current coil can effectively be used in the logging while drilling system. The simulation results showed that the impedance of the eddy current coil is a function of conductivity of the surrounding media. The formation conductivity is strongly dependent on the concentration of hydrocarbons, so different formation layers can be distinguished by measuring coil impedance. Different source frequencies were applied, and it was found that this method works well in frequency range from 100 MHz to 1 GHz. The investigation depth was studied in this paper, and a 3-layer formation model was simulated in this paper. The results showed that this novel method could be effectively used in a well logging system.


Shiwei Sheng, Kang Li, Fanmin Kong, and Bin Wang, "Investigation of a Conductivity Logging Tool Based on Single Coil Impedance Measurement Using FDTD Method," Progress In Electromagnetics Research M, Vol. 39, 171-180, 2014.


    1. Sun, X. Y., Z.-P. Nie, A. Li, and X. Luo, "Analysis and correction of borehole effect on the responses of multicomponent induction logging tools," Progress In Electromagnetics Research, Vol. 85, 211-226, 2008.

    2. Wait, J. R., "Complex resistivity of the earth," Progress In Electromagnetics Research, Vol. 1, 1-173, 1989.

    3. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.

    4. Lee, K. Y., B.-K. Chung, Z. Abbas, K. Y. You, and E. M. Cheng, "Amplitude-only measurements of a dual open ended coaxial sensor system for determination of complex permittivity of materials," Progress In Electromagnetics Research M, Vol. 28, 27-39, 2013.

    5. Wang, B., K. Li, F. Kong, and S. Sheng, "Complex permittivity logging tool excited by transient signal for MWD/LWD," Progress In Electromagnetics Research M, Vol. 32, 95-113, 2013.

    6. Anderson, B. I., Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response, Delft University Press, Delft, 2001.

    7. Ellis, D. V. and J. M. Singer, Well Logging for Earth Scientists, Springer, Dordrecht, 2007.

    8. Lee, H. O., et al., "Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic Earth formations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, 727-735, 2012.

    9. Tianxia, Z., M. Gerald, H. John, and C. G. Jaideva, "A novel technique to compute impedance of an arbitrarily oriented coil antenna for well logging applications," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), Vol. 39, 2829-2838, 2012.

    10. Theodoulidis, T. P., T. D. Tsiboukis, and E. E. Kriezis, "Analytical solutions in Eddy current testing of layered metals with continuous conductivity profiles," IEEE Transactions on Magnetics, Vol. 31, 2254-2260, 1995.

    11. Uzal, E., J. C. Moulder, S. Mitra, and J. H. Rose, "Impedance of coils over layered metals with continuity variable conductivity and permeability: Theory and experiment," Journal of Applied Physics, Vol. 74, 2076-2089, 1993.

    12. Uzal, E. and J. H. Rose, "The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously," IEEE Transactions on Magnetics, Vol. 29, 1869-1873, 1993.

    13. Uzal, E., M. O. Kaya, and I. Zkol, "Impedance of a cylindrical coil over an infinite metallic halfspace with shallow surface features," Journal of Applied Physics, Vol. 86, 2311-2317, 1999.

    14. Theodoulidis, T. P. and J. R. Bowler, "Impedance of an induction coil at the opening of a borehole in a conductor," Journal of Applied Physics, Vol. 103, 024905, 2008.

    15. Trltzsch, U., F. Wendler, and Kanoun, "Simplified analytical inductance model for a single turn eddy current sensor," Sensors and Actuators A: Physical, Vol. 191, 11-21, 2013.

    16. Vasic, D., V. Bilas, and D. Ambrus, "Validation of a coil impedance model for simultaneous measurement of electromagnetic properties and inner diameter of a conductive tube," IEEE Transactions on Instrumentation and Measurement, Vol. 55, 337-342, 2006.

    17. Vasic, D., V. Bilas, and B. snajder, "Analytical modelling in low-frequency electromagnetic measurements of steel casing properties," NDT & E International, Vol. 40, 103-111, 2007.

    18. Hue, Y. K., F. L. Teixeira, L. E. S. Martin, and M. Bittar, "Modeling of EM logging tools in arbitrary 3-D borehole geometries using PML-FDTD," IEEE Geoscience and Remote Sensing Letters, Vol. 2, 78-81, 2005.

    19. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

    20. Luebbers, R., L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Transactions on Antennas and Propagation, Vol. 40, 1577-1583, 1992.

    21. TerMan, F. E., Radio Engineers’ Handbook, McGraw-Hill, London, 1950.

    22. De Mulder, B., K. Van Renterghem, E. De Backer, P. Suanet, and J. Vandewege, "Java-enabled low cost RF vector network analyzer," The 3rd International IEEE-NEWCAS Conference, 377-380, 2005.