Vol. 39
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-10-30
Torque Calculation in Interior Permanent Magnet Synchronous Machine Using Improved Lumped Parameter Models
By
Progress In Electromagnetics Research M, Vol. 39, 131-139, 2014
Abstract
In this paper, we present improved Lumped-Parameter Models for simulation of a Interior Permanent Magnet Synchronous (IPMS) machine to calculate PM flux linkage, and Q and D-axis inductances which can be used for torque calculation. These improved models include all details of flux barriers and air bridges of rotor and also the e ect of saturation in central posts and stator core. To validate the accuracy of these models, results are compared with the Finite Element Method results for a candidate three-layer IPMS machine.
Citation
Hooshang Mirahki Mehdi Moallem , "Torque Calculation in Interior Permanent Magnet Synchronous Machine Using Improved Lumped Parameter Models," Progress In Electromagnetics Research M, Vol. 39, 131-139, 2014.
doi:10.2528/PIERM14093004
http://www.jpier.org/PIERM/pier.php?paper=14093004
References

1. Miller, T. J. E., Brushless Permanent-magnet and Reluctance Motor Drives, 3rd Edition, Oxford University Press, 1989.

2. Boldea, I., Reluctance Synchronous Machines and Drives, Oxford University Press, 1996.

3. Zhu, L., S. Z. Jiang, Z. Zhu, and C. Chan, "Analytical modeling of open-circuit air-gap field distributions in multisegment and multilayer interior permanent-magnet machines," IEEE Trans. Mag., Vol. 45, No. 8, 3121-3130, 2009.
doi:10.1109/TMAG.2009.2019841

4. Zhu, Z., D. Howe, E. Bolte, and B. Ackermann, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Part I. Open-circuit field," IEEE Trans. Mag., Vol. 29, No. 1, 124-135, 1993.
doi:10.1109/20.195557

5. Hwanga, C., C. Changa, C. Panb, and T. Changc, "Estimation of parameters of interior permanent magnet synchronous motors," Journal of Magnetism and Magnetic Materials, Vol. 239, No. 1-3, 600-603, 2006.
doi:10.1016/S0304-8853(01)00647-3

6. Lovelace, E., T. Jahns, and J. H. Lang, "A saturating lumped-parameter model for an interior PM synchronous machine," IEEE Transaction on Industry Applications, Vol. 38, No. 3, 645-650, 2002.
doi:10.1109/TIA.2002.1003413

7. Tariq, A., C. Nino Baron, and E. Strangas, "Iron and magnet losses and torque calculation of interior permanent magnet synchronous machines using magnetic equivalent circuit," IEEE Trans. Mag., Vol. 46, No. 12, 4073-4080, 2010.
doi:10.1109/TMAG.2010.2074207

8. Amrhein, M. and P. Krein, "Induction machine modeling approach based on 3-D magnetic equivalent circuit framework," IEEE Transactions on Energy Conversion, Vol. 25, No. 2, 339-347, 2010.
doi:10.1109/TEC.2010.2046998

9. Zhu, Z., Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, "Analysis of electromagnetic performance of flux-switching permanent-magnet Machines by nonlinear adaptive lumped parameter magnetic circuit model," IEEE Trans. Mag., Vol. 41, No. 11, 4277-4287, 2005.
doi:10.1109/TMAG.2005.854441

10. Bash, M. and S. Pekarek, "Modeling of salient-pole wound-rotor synchronous machines for population-based design," IEEE Transaction on Energy Conversion, Vol. 26, No. 2, 381-392, 2011.
doi:10.1109/TEC.2011.2105874

11. Zhu, Z., D. Howe, and C. Chan, "Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines," IEEE Trans. Mag., Vol. 38, No. 1, 229-238, 2002.
doi:10.1109/20.990112

12. Lovelace, E. C. F., "Optimization of a magnetically saturable interior permanent-magnet synchronous machine drives,", Ph.D. Dissertation, MIT, 2000.

13. Hwang, C. C. and Y. H. Cho, "Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors," IEEE Trans. Mag., Vol. 37, No. 4, 3021-3024, 2001.
doi:10.1109/20.947055

14. Rahman, M., T. Little, and G. Slemon, "Analytical models for interior-type permanent magnet synchronous motors," IEEE Trans. Mag., Vol. 21, No. 5, 1741-1743, 1985.
doi:10.1109/TMAG.1985.1064115

15. Mirahki, H., M. Moallem, and S. Rahimi, "Design optimization of IPMSM for 42V integrated starter-alternator using lumped parameter model and genetic algorithms," IEEE Trans. Mag., Vol. 50, No. 3, 114-119, 2014.
doi:10.1109/TMAG.2013.2285358

16. Bracikowski, N., M. Hecquet, P. Brochet, and S. V. Shirinskii, "Multiphysics modeling of a permanent magnet synchronous machine by using lumped models," IEEE Trans. Mag., Vol. 59, No. 6, 2426-2437, 2012.

17. Zhu, Z., D. Howe, and Z. Xia, "Prediction of open-circuit airgap field distribution in brushless machines having an inset permanent magnet rotor topology," IEEE Trans. Mag., Vol. 30, No. 1, 98-107, 1994.
doi:10.1109/20.272521

18. Wang, J., D. Lieu, W. Lorimer, and A. Hartman, "Comparison of lumped parameter and finite element magnetic modeling in a brushless DC motor," IEEE Trans. Mag., Vol. 33, No. 5, 4092-4094, 1997.
doi:10.1109/20.619673

19. Hsieh, M. F. and Y. C. Hsu, "A generalized magnetic circuit modeling approach for design of surface permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 779-792, 2012.
doi:10.1109/TIE.2011.2161251

20. Mi, C., M. Filippa, W. Liu, and R. Ma, "Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, 50-58, 2004.

21. Vagati, A., M. Pastorelli, F. Scapino, and G. Franceschini, "Effect of magnetic cross-coupling in synchronous reluctance motors," Intelligent Motion Conference, Vol. 1, 279-285, 1997.

22. Vagati, A., M. Pastorelli, F. Scapino, and G. Franceschini, "Cross-saturation in synchronous reluctance motors of the transverse-laminated type," Industry Applications Conference, Thirty-Third IAS Annual Meeting, Vol. 1, 127-135, 1998.

23. Vagati, A., M. Pastorelli, F. Scapino, and G. Franceschini, "Design criteria of an IPM machine suitable for field-weakened operation," International Conference on Electrical Machine, 1059-1065, 1999.