Vol. 40
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-04
An Efficient Technique for Design of Electrically Thick Differentially-Driven Probe-Fed Microstrip Antennas
By
Progress In Electromagnetics Research M, Vol. 40, 37-44, 2014
Abstract
This paper presents a computationally efficient technique for designing electrically thick differentially-driven rectangular microstrip antennas with coaxial probe feed. It concerns the use of a transmission line model for probe positioning, along with a full-wave field simulator that yields accurate results with reduced number of required full-wave simulations. An electrically thick antenna was designed with the proposed technique to operate at 2442 MHz, having its radiation patterns and input impedance measured and compared against a single-feed rectangular microstrip antenna to demonstrate the advantages of using differential feed to reduce cross-polarization in H-plane.
Citation
Cristiano Borges De Paula Daniel Chagas do Nascimento Ildefonso Bianchi , "An Efficient Technique for Design of Electrically Thick Differentially-Driven Probe-Fed Microstrip Antennas," Progress In Electromagnetics Research M, Vol. 40, 37-44, 2014.
doi:10.2528/PIERM14110304
http://www.jpier.org/PIERM/pier.php?paper=14110304
References

1. Chang, E., S. A. Long, and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 767-772, Jun. 1986.
doi:10.1109/TAP.1986.1143890

2. Huang, J., "Microstrip antennas: Analysis, design, and application," Modern Antenna Handbook, 157-200, C. A. Balanis (ed.), Wiley, Hoboken, 2008.

3. Chiba, T., Y. Suzuki, and N. Miyano, "Suppression of higher modes and cross polarized component for microstrip antennas," IEEE Antenna and Propagation Society Int. Symp., Vol. 2, 285-288, Albuquerque, Piscataway, 1982.

4. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electronics Letters, Vol. 35, No. 5, 355-357, Mar. 1999.
doi:10.1049/el:19990269

5. Fujimoto, K., "Antennas for mobile communications," Modern Antenna Handbook, 1143-1228, C. A. Balanis, Ed., Wiley, Hoboken, 2008.

6. Zhang, Y. P. and J. J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1092-1099, Apr. 2006.
doi:10.1109/TAP.2006.872597

7. Zhang, Y. P., "Design and experiment on differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2701-2708, Oct. 2006.
doi:10.1109/TAP.2007.905832

8. Zhang, Y. P., "Electrical separation and fundamental resonance of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1078-1084, Apr. 2011.
doi:10.1109/TAP.2011.2109680

9. Tong, Z., A. Stelzer, and W. Menzel, "Improved expressions for calculating the impedance of differential feed rectangular microstrip patch antennas," IEEE Microw. Wireless Compon. Letters, Vol. 22, No. 9, 441-443, Sep. 2012.
doi:10.1109/LMWC.2012.2212240

10. Zhang, Y. P. and Z. Chen, "The Wheeler method for the measurement of the efficiency of differentially-driven microstrip antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3436-3439, Jun. 2014.
doi:10.1109/TAP.2014.2314736

11. Richards, W. F., Y. T. Lo, and D. D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 38-46, Jan. 1981.
doi:10.1109/TAP.1981.1142524

12. Ferreira, D. B., C. B. de Paula, and D. C. do Nascimento, "Design techniques for conformal microstrip antennas and their arrays," Advancement in Microstrip Antennas with Recent Applications, 3-31, A. Kishk, Ed., InTech, Rijeka, 2013, Doi: 10.5772/53019.

13. Munson, R. E., "Conformal microstrip antennas and microstrip phased arrays," IEEE Trans. Antennas Propag., Vol. 22, No. 1, 74-78, Jan. 1974.
doi:10.1109/TAP.1974.1140723

14. Derneryd, A. G., "A theoretical investigation of the rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 532-535, Jul. 1978.
doi:10.1109/TAP.1978.1141890

15. De Paula, C. B., D. B. Ferreira, and I. Bianchi, "Algorithm for the design of linearly polarized microstrip antennas," Momag Symp., Joao Pessoa, Brazil, Aug. 5-8, 2012 (in Portuguese).